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1 PROJECT SUMMARY

This final report summarizes the results of NASA Grant No. NAGW-3508 entitled

"Modeling of the Coupled Magnetospheric and Neutral Wind Dynamos." Over the past four

years of funding, SRI, in collaboration with the University of Texas at Dallas, has been involved

in assessing the influence of thermospheric neutral winds on the electric field and current

systems at high latitudes. The initial direction of the project was to perform a set of numerical

experiments concerning the contribution of the magnetospheric and neutral wind dynamo

processes, under specific boundary conditions, to the polarization electric field and/or the field-

aligned current distribution at high latitudes. To facilitate these numerical experiments we

developed a numerical scheme that relied on using output from the NCAR Thermosphere-

Ionosphere General Circulation Model (NCAR-TIGCM), expanding them in the form of

spherical harmonics and solving the dynamo equations spectrally. Once initial calculations were

completed, it was recognized that the neutral wind contribution could be significant but its actual

contribution to the electric field or currents depended strongly on the generator properties of the

magnetosphere. Solutions to this problem are not unique because of the unknown characteristics

of the magnetospheric generator, therefore the focus was on two limiting cases. One limiting

case was to consider the magnetosphere as a voltage generator delivering a fixed voltage to the

high-latitude ionosphere and allowing for the neutral wind dynamo to contribute only to the

current system. The second limiting case was to consider the magnetosphere as a current

generator and allowing for the neutral wind dynamo to contribute only to the generation of

polarization electric fields. This work was completed and presented at the 1994 Fall AGU

meeting.

The direction of the project then shifted to applying the Poynting flux concept to the high-

latitude ionosphere. This concept was more attractive as it evaluated the influence of neutral

winds on the high-latitude electrodynamics without actually having to determine the generator

characteristics of the magnetosphere. The influence of the neutral wind was then determined not

by estimating how much electric potential or current density it provides, but by determining the

contribution of the neutral wind to the net electromagnetic energy transferred between the

ionosphere and magnetosphere. The estimate of the net electromagnetic energy transfer and the

role of the neutral winds proves to be a more fundamental quantity in studies of magnetosphere-

ionosphere coupling [e.g., Kelley et al., 1991; Cowley et al., 1991; Thayer and Vickrey, 1992].

Kelley et al., [ 1991 ] also showed that by using electric and magnetic field measurements from

the HILAT satellite, the Poynting flux could be a measurable quantity from polar-orbiting, low-

altitude spacecraft. Through collaboration with Dr. Heelis and others at UTD and their expertise

of the electric field measurements on the DE-B satellite, an extensive analysis was planned to

determine the Poynting flux from the DE-B measurements in combination with a modeling effort





to help interprettheobservationstakingintoaccountthecoupledmagnetosphere-ionosphere
(MI) system.

This effort hasbeenvery successfulin establishingtheDC Poyntingflux asa fundamental
quantityin describingthecouplingof electromagneticenergybetweenthemagnetosphereand
ionosphere.TheDE-B satelliteelectricandmagneticfield measurementswerecarefully
scrutinizedto provide,for thefirst time, a largedatasetof DC, field-aligned,Poyntingflux
measurements.Investigationsdescribingthefield-alignedPoyntingflux observationsfrom DE-B
orbitsunderspecificgeomagneticconditionsandfrom manyorbits,wereconductedto providea
statisticalaverageof thePoyntingflux distributionover thepolarcap.Thetheoreticalmodeling
effort hasprovidedinsight into theobservationsby formulatingtheconnectionbetween
Poynting'stheoremandtheelectromagneticenergyconversionprocessesthatoccurin the
ionosphere.Modelingandevaluationof theseprocesseshashelpedinterpretthesatellite
observationsof theDC Poyntingflux andimproveourunderstandingof thecouplingbetween
theionosphereandmagnetosphere.

UponevaluatingtheDE-B measurementsanddevelopingthenumericalexperimentsto
evaluatethePoyntingflux, it wasrealizedthattheelectricalcharacteristicsof theE region(i.e.,
conductivity,neutralwinds,andelectricfields) andtheverticalextentof themagnetospheric
couplinginto thehigh-latitudeE regionwasimportantfor interpretingthePoyntingflux
measurementandwaspoorlyrepresentedin thetheoreticalmodels.At thesametime,new
operatingmodeswerebeingimplementedat theSondrestromincoherent-scatterradarfacility
thatvastly improvedtheradar'scapabilityto probeat highresolutiontheelectrodynamic
behaviorof thehigh-latitudeionosphere.Althoughthesatellitemeasurementcouldprovidethe
netelectromagnetictransferbetweenthemagnetosphereandionosphere,it couldnot determine
how thisenergywasdistributedwithin theE region.Theradarmeasurementsprovidedan
opportunityto evaluatethealtitudedistributionof theelectromagneticenergytransferrateat
high latitudesaswell asthepartitioningof thiselectromagneticenergyinto otherenergyforms
(suchasJouleheatingandmechanicalenergy)andtheinfluenceof theneutralwind on the
electromagneticenergytransfer.Thus,thethird andfinal effort within theprojectwasto pursue
thedistributionin altitudeof theelectromagneticenergytransferin thehigh-latitudeE region

throughtheuseof measurementsby theSondrestromincoherent-scatterradar.

As evidencefor thesuccessof thisproject,threepublicationsandtwo additional
manuscripts(onerecentlysubmittedto theJournal of Geophysical Research, the other in

preparation for submission) have been produced. The titles for these manuscripts are given in

Section 3 of this report, with the full manuscripts of all but the work in progress manuscript

included as appendices. Highlights from these manuscripts are given in the following section.





2 PROJECT HIGHLIGHTS

2.1 DE-B POYNTING FLUX OBSERVATIONS: CASE STUDY

Work at the University of Texas at Dallas by J. B. Gary and R. A. Heelis included the

careful determination of the electric field and perturbation magnetic field from the DE-B satellite

measurements. Significant effort was involved in determining the magnetometer baseline in an

automated and physically defensible manner. The results from this effort led to the development

of a routine processor for evaluating the field-aligned Poynting flux from the DE-B

measurements. This was a necessary step toward determining unambiguously the Poynting flux

from the DE-B satellite measurements. J. F. Vickrey and J. P. Thayer contributed to the early

development of the DE-B calculations and provided consultation on the interpretation of the

measurement. The Poynting flux case study of a few chosen DE-B orbits illustrated that

• The field-aligned Poynting flux is directed mainly downward into the high-latitude

ionosphere with typical magnitudes of a few tens of mW/m 2 in the auroral zone and from

zero to 10 mW/m 2 inside the polar cap

• Regions of upward Poynting flux were observed over localized regions with magnitudes

averaging less than 2 mW/m 2.

2.2 ELECTRODYNAMIC MODEL

Work at SRI involved modeling the exchange of electromagnetic energy between the

ionosphere and magnetosphere to help interpret the DE-B Poynting flux observations. In this

study a model simulation providing a self-consistent description of the thermosphere and

ionosphere was used to study the coupled aspects of the MI system at high latitudes. This

approach differs from previous efforts in which the electrodynamic properties of the ionosphere

and magnetosphere were evaluated separately to demonstrate the potential role of the neutral

winds in the electrodynamics.

To describe the electrical properties of the high-latitude ionosphere, a numerical model was

constructed, from the framework provided by the Vector Spherical Harmonic (VSH) model, that

determines the ionospheric currents, conductivities, and electric fields including both

magnetospheric inputs and neutral wind dynamo effects. This model development grew from the

earlier question of whether an electrical energy source in the ionosphere was capable of

providing an upward Poynting flux. The model solves the steady-state neutral wind dynamo

equations and the Poynting flux equation to provide insight into the electrodynamic role of the

neutral winds. The VSH model is based on a spectral representation of the output fields from

NCAR-TIGCM simulations. A set of NCAR-TIGCM runs has been expanded into VSH model

coefficients that can be used to represent a range of geophysical conditions.





Themodelingeffort to determinethehigh-latitudeenergyflux hasbeenableto reproduce
manyof the large-scalefeaturesobservedin thePoyntingflux measurementsmadeby DE-2.
BecausethePoyntingflux measurementis anintegratedresultof energyflux intoor out of the
ionosphere,we investigatedtheionosphericpropertiesthatmaycontributeto theobservedflux
of energymeasuredby thespacecraft.Theresultsaresummarizedin theappendedmanuscript,
AppendixC. Understeady-stateconditionstheelectromagneticenergyflux, or DC Poynting
flux, isequalto theJouleheatingrateandthemechanicalenergytransferratein thehigh-latitude
ionosphere.Although theJouleheatingrateactsasanenergysink, transformingelectromagnetic
energyinto thermalor internalenergyof thegas,themechanicalenergytransferratemaybe
eitherasinkor sourceof electromagneticenergy.In thesteadystate,it isonly themechanical
energytransferratethatcangenerateelectromagneticenergyandresultin aDC Poyntingflux
thatis directedoutof the ionosphere.

Themodelsimulationled to anumberof conclusions.

• Theelectromagneticenergyflux ispredominantlydirectedinto thehigh-latitude
ionosphere,with greaterinputin themorningsectorthantheeveningsectorby afactorof
three.

• TheJouleheatingrateaccountsfor muchof theelectromagneticenergydepositedin the
ionosphere,with theconductivity-weightedneutralwind contributingsignificantlyto the
Jouleheatingrateandthusto thenetelectromagneticenergyflux in the ionosphere.

• On average,themechanicalenergytransferratecontributesabout20%to thenet
electromagneticenergyflux in thedawn,dusk,andpolarcapregions,actingasasinkof
electromagneticenergyflux in thedawnanddusksectorsandasourceof electromagnetic
energyflux in thepolarcap.

• An upwardelectromagneticenergyflux is foundin theregionsneartheconvection
reversalboundaries.This flux is dueto themechanicalenergytransferrateexceedingthe
Jouleheatingrate.Theupwardelectromagneticenergyflux wasfoundto besmallpartly
dueto therelationshipof theconductivity-weightedneutralwind to theimposedelectric
field andpartlydueto theJouleheatingrateincreasingirrespectiveof thesourceof
electromagneticenergyflux.

2.3 DE-B POYNTING FLUX OBSERVATIONS: STATISTICAL STUDY

Using DE-B data of ion drift velocities and magnetic fields, the field-aligned Poynting flux

for 576 orbits over the satellite lifetime were calculated. The data were sorted for interplanetary

magnetic field conditions (northward and southward IMF) and geomagnetic activity (Kp < 3 and

Kp > 3) and binned by invariant latitude and magnetic local time. In general, it was found that

the average Poynting flux is directed into the ionosphere over the entire polar cap indicating

electric fields of magnetospheric origin generally dominate. The dawnside auroral zone generally

has the largest Poynting flux values in the polar cap, exceeding 6 mW/m 2. We also investigated

4





the distribution of upward Poynting flux and found it never exceeded 3 mW/m 2 over the entire

polar cap. An interesting feature in the DE-B data set is the significant occurrence and magnitude

of upward Poynting flux in the predawn sector during periods of southward IMF and high Kp

conditions.

2.4 HEIGHT-RESOLVED E-REGION ELECTRODYNAMICS AND

JOULE HEATING RATES

The improved capability of the Sondrestrom incoherent-scatter radar to sample the E region

at high resolution provides new insight into high-latitude E-region electrodynamic behavior in

terms of currents, conductivities, electric fields, and neutral winds, and their role in the exchange

of electromagnetic energy between the ionosphere and magnetosphere. This capability permitted

the direct investigation of electromagnetic energy dissipation--that is, Joule heating--in the

high-latitude ionosphere, which is fundamental in M-I coupling. Also, the net Poynting flux

could be estimated from the radar measurements by determining the electromagnetic energy

transfer rate throughout the ionosphere. The radar estimation of the height-resolved and height-

integrated E-region Joule heating rates and the influence of the neutral wind on these estimates is

the focus of a paper recently submitted to the Journal of Geophysical Research and provided in

Appendix D. The following summarizes the conclusions obtained from this study.

I. The ability to measure the height-resolved Joule heating rate, qj, that includes the neutral

wind revealed significantly more structure in both experiments than observed in the qjE profiles

(whose altitude dependence is described by the Pedersen conductivity). This structure is

attributed to the E-region neutral wind and its altitude-dependent influence on the Joule heating

rate; often, enhancing the local Joule heating rate at one altitude while reducing the Joule heating

rate at another. This led to a number of occasions where a much narrower and more localized

enhancement occurred in the height-resolved Joule heating rate. The localization of the E-region

Joule heating rate (about 12 km for the cases presented) caused by the presence of the neutral

wind is a new observation whose impact on the ionosphere-thermosphere system requires further

investigation.

2. The upper E-region neutral winds modify the Joule heating rate in a manner that is

associated with the behavior of the electric field. Typically, it was found that when the electric

field direction remained steady and only the magnitude of the electric field was enhanced, the

neutral winds acted to reduce the upper E-region Joule heating rate. During times when the

electric field direction changed significantly, it was found that the neutral winds acted to enhance

the upper E-region Joule heating rate. Subsequent counterclockwise rotation of the neutral wind

with decreasing altitude typically led to enhancements in the Joule heating rate in the lower E

region.

3. The most significant neutral wind contribution to the Joule heating rate came after a

substorm period on May 2, 1995, where an enhancement in the height-integrated Joule heating

rate by over 400% occurred. Here the majority of the neutral wind contribution came from the
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upper E region. This enhancement occurred during a 180 ° change in electric field direction and

an overall reduction in electric field magnitude. Other enhancements of the height-integrated

Joule heating rate by 200% were observed to occur during periods of significant changes in the

electric field direction. Reduction of the height-integrated Joule heating rate by the neutral winds

by as much as 40% were observed during periods of elevated magnitude in the electric field but

with the direction of the electric field steady for extended periods:

4. Overall, the estimate of the height-integrated Joule heating rate, QjE, assuming the neutral

wind is zero, served as a limited proxy for the two data sets presented and showed an invariance

to moderate changes in the ion-neutral collision frequency model. The height-integrated Joule

heating rate, Qj, is more susceptible to changes in the ion-neutral collision frequency model, as

the height-resolved profile is inversely proportional to the collision frequency. Yet, the height of

maximum Joule heating is best estimated by the qj profile, which is not influenced by the change

in collision frequency. Finally, reasonable changes to the ion-neutral collision frequency model

can modify the absolute values presented in this work, but cannot eliminate the neutral wind

effects presented nor the trends observed.

2.5 ELECTROMAGNETIC ENERGY TRANSFER RATES

The radar estimation of the height-resolved and height-integrated electromagnetic energy

transfer rate is the focus of a paper still in preparation for submission to the Journal of

Geophysical Research. The proposed title of the manuscript is "Evaluation of electromagnetic

energy transfer in the high-latitude E-region as determined by the Sondrestrom incoherent scatter

radar" by J.P. Thayer. Because this work is not finalized, we do not include it as an appendix, but

provide a brief summary of the approach presented therein.

The transfer of electromagnetic energy flux is a fundamental quantity that describes the

electrical exchange between the ionosphere and magnetosphere. The purpose of this paper is to

establish that the Sondrestrom radar is capable of providing estimates of this electrical transfer

on a routine basis and to interpret these measurements in terms of MI coupling. The approach is

to apply high-resolution electrodynamic measurements of the E region determined by the

Sondrestrom radar to evaluate the height-resolved and height-integrated transfer of

electromagnetic energy between the high-latitude ionosphere and magnetosphere. This will allow

the altitude distribution of the electromagnetic energy flux, q, and the total flux into or out of the

ionosphere to be determined directly. In addition, the redistribution of this energy flux in the

ionosphere can be evaluated from the radar measurements by determining the height-resolved

Joule heating rate, qj, and mechanical energy transfer rate, qm.





3 SCIENTIFIC REPORTS

A paper describing the technique and giving examples of Poynting flux measurements from

DE-2 has been published: J..B. Gary, R.A. Heelis, W.B. Hanson, and J.A. Slavin, "Field-aligned

Poynting flux observations in the high-latitude ionosphere," J. Geophys. Res., 87, 11417-11427,

1994. (See Appendix A.)

A paper describing the numerical results for the modeling study of the Poynting flux has

been published: J.P. Thayer, J.F. Vickrey, R.A. Heelis, J.B. Gary, "Interpretation and modeling

of the high-latitude electromagnetic energy flux," J. Geophys. Res., 100, 19715-19728, 1995.

(See Appendix B.)

A paper describing the distribution of the Poynting flux measurements from DE-2 has been

published: J.B. Gary, R.A. Heelis, and J.P. Thayer, "Summary of field-aligned Poynting flux

observations from DE 2," Geophys. Res. Lett, 22, 1861-1864, 1995. (See Appendix C.)

A paper describing the influence of the neutral winds on estimates of the height-resolved

Joule heating rate from the Sondrestrom incoherent-scatter radar has been submitted to the

Journal of Geophysical Research: "Height-resolved Joule heating rates in the high-latitude E

region and the influence of neutral winds," by J.P. Thayer. (See Appendix D.)

A paper describing the estimation of the height-resolved and height-integrated

electromagnetic transfer rate at high latitudes by the Sondrestrom incoherent-scatter radar is in

preparation for submission to the Journal of Geophysical Research: "Evaluation of

electromagnetic energy transfer in the high-latitude E-region as determined by the Sondrestrom

incoherent-scatter radar," by J.P. Thayer.
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Field-aligned Poynting flux observations in the

high-latitude ionosphere

J. B. Gary, R. A. Heelis, and W. B. Hanson

Center for Space Sciences, Physics Programs, University of Texas at Dallas, Richardson

J. A. Slavin
Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight Center, Greenbelt,

Maryland

Abstract. We have used data from Dynamics Explorer 2 to investigate the rate

of conversion of electromagnetic energy into both thermal and bulk flow particle

kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion

rate E.J can be determined from spacecraft measurements of the electricand

magnetic fieldvectors by deriving the field-alignedPoynting flux, SII=S-/_o,where

J_o is in the direction of the geomagnetic field. Determination of the Poynting

flux from satelliteobservations is criticallydependent upon the establishment of

accurate values of the fieldsand is especially sensitiveto errors in the baseline

(unperturbed) geomagnetic field.We discuss our treatment of the data in some
detail,particularly in regard to systematically correcting the measured magnetic

fieldto account for attitude changes and model deficiencies. SIIcan be used to

identify the relative strengths of the magnetosphere and thermospheric winds as

energy drivers and we present observations demonstrating the dominance of each of
these. Dominance of the magnetospheric driver isindicated by SIIdirected into the

ionosphere. Electromagnetic energy isdelivered to and dissipated within the region.

Dominance of the neutral wind requires that the conductivity weighted neutral

wind speed in the direction of the ion driftbe larger than the ion drift,resulting

in observations of an upward directed Poynting flux. Electromagnetic energy is

generated within the ionospheric region in this case. We also present observations
of a case where the neutral atmosphere motion may be reaching a state of sustained

bulk flow velocity as evidenced by very small Poynting flux in the presence of large

electricfields.

Introduction

The study ofcoupling processesbetween the Earth's

magnetosphere and ionosphere isfrequentlyaided by
an examination of the energy flow between these re-

gions.Poynting vectorsdetermined from insituelectric

and magnetic fieldmeasurements have been frequently
used in the study of magnetospheric wave phenomena

associatedwith micropulsationsof the magnetic field.

Cummings et al. [1978] performed such an analysis us-

ing ATS 6 data from geosynchronous orbitto establish

the presenceofstanding hydromagnetic waves along the

magnetic field.Mauk and McPherron [1980],again with
ATS 6 data, used calculatedPoynting vectorsin their

analysisof possibleAlfven/ion cyclotron waves origi-

nating in the equatorialmagnetosphere. More recently,
,Erlandson et al. [1990], LaBelle and T_emann [1992],

Copyright 1994 by the American Geophysical Union.

Paper number 93-IA03167.

0148.0227/9,1/93J A-03167505.00

and Fraser et al. [1992] calculatedPoynting vectors

from satellitedata to establishthe presence ofelectro-

magnetic ion cyclotron waves similartothose discussed

by Mauk and McPherron [1980].
The use of Poynting flux determined from satel-

litemeasurements in an analysisof very large scale,

hlgh-latitudeionosphericactivitywas firstproposed by

Knudsen [1990] and shortly thereafter by Kelley et al.

[1991]. These authors describedinsome detailthe ap-

plicationof globalPoynting fluxdetermination from in
situmeasurements to the geophysicalsystem comprised

of the coupled magnetosphere and ionosphere. Using

the principleof conservationof electromagneticenergy

(Poynting'stheorem), they demonstrated the possibil-

ity of determining the rate of energy conversion tak-

ing placein a volume extending from the satelliteorbit
down to the base of the ionosphere by examining the

verticalcomponent ofthe Poynting vector.The energy

conversion rate E • .lis relatedto the Joule heating

rate of the plasma and the rate ofmomentum trmasfer

between the ions and the neutralgas inthe lower iono-

sphere. They also included resultsofsuch an analysis
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using data from the HILAT satellite at 800 km alti-
tude. Our approach to the technique is similar to theirs

with the exceptions that the volume to which Poynting's
theorem is applied is a single flux tube in our case and

we determine the field-aligned component of the Poynt-

ing vector rather than approximate it using the vertical
component. We refer the reader to the Appendix of
Kelley e_ aL [1991] for further details. The major as-
sumption in applying Poynting's theorem to determine

the rate of electromagnetic energy conversion using in
situ measurements is the assumption that steady state

conditions prevail. This ignores possible contributions
from wave phenomena which are likely to be present

in the high latitude ionosphere but which are likely to

present a signature at DE 2 altitudes below the mini-
mum scale size that we are considering in the present

work (tens of kilometers).
The electric fields and currents which link the magne-

tosphere and ionosphere are generated by the dynamo
action of plasma flowing through the ambient magnetic

field. Electromagnetic energy in the high latitude iono-
sphere can come from two sources, one originating from
the interaction of the solar wind and magnetosphere and

the other originating in the ionosphere. The magneto-

spheric source can be considered as a dynamo directly
connected to the polar cap at the highest magnetic lat-

itudes which, under most conditions in the ionosphere,
magnetosphere, and solar wind, will drive energy into

the lower regions of the earth's atmosphere where the
circuit is closed through the ionosphere. In these cir-
cumstances, the ionosphere acts as a resistive load to

the magnetospheric generator, although it is not a pas-
sive resistive element in this circuit. The effect of the

ionosphere on the global circuit is determined by the
ionospheric conductivity and on the behavior of the

neutral wind. Electromagnetic energy can also be pro-

duced within the high latitude ionosphere via the action
of a neutral wind dynamo, principally in the E region.

In this region the neutral atmosphere motion may be
driven by solar heating but, more importantly, energy
is "stored _ in the neutral atmosphere at lower iono-

spheric altitudes through frictional coupling between

the magnetosphere-driven plasma and the neutral gas in
which it is embedded. Electric fields mapped from the

magnetosphere impose a circulation pattern on the ions

in the ionosphere. During prolonged times of strong in-
terplanetary magnetic field (IMF) conditions, this ck-
culation is transferred to the neutrals through collisions.

If the IMF then changes its orientation, say from south-
ward to northward, then the ions can be driven by elec-
tric fields in a different direction from that in which the

neutrals are moving. The resulting ion motion will then
be determined by the relative strengths of the newly es-
tablished electric fields from the magnetosphere and the
inertial and viscous effects of the neutral wind. If the

electric field in the frame of reference of the neutral

particles is small, then the ions may be driven by the
neutral wind dynamo along the previously established

convection pattern. Conceptually, these are the antic-

ipated circumstances under which an upward directed

Poynting flux may be observed in a reference frame co-

rotating with the Earth.
The initial motivations behind an effort to calculate

the large scale Poynting vector in the Earth's ionosphere

have been to provide observations of the action of a
neutral wind dynamo. Lyon8 et ai. [1985] proposed a

neutral wind dynamo as a current source in the polar

cap during times of stagnant ion convection. Modeling
efforts of neutral wind phenomenon have been carried
out recently by Deng e_ al [1991] and by Thayer and

gickre_ [1992]. These efforts have suggested the ex-
istence of regions of outward directed electromagnetic

energy flux in the polar cap. Fejer [1983] aLso described
a neutral wind dynamo effect, termed a disturbance dy-

namo, as an electric field driver at sub-auroral latitudes
following the onset of geomagnetic storms. The dom-

inance of these dynamos would be readily identifiable
with field-aligned Poynting flux observations of suffi-

cient accuracy.

Measurements from DE 2

A measurement of the Poynting vector is critically

dependent on accurate measurements of the electric

field and the magnetic field perturbation vectors. Ac-
cordingly, the bulk of the technical work involved in
this research involves an analysis of the absolute mag-

nitudes of the measured quantities, as well as their un-

certainties, and the development of suitable techniques
to render accurate calculations of the Poynting vector
over the widest possible range of acquired DE 2 data.

We have taken some care to provide the highest qual-
ity derivation of the drift velocities. This is particu-

larly important in the derivation of the ion drift ve-

locity along the spacecraft x axis (ram) which involves
a least squares analysis of the ion energy distribution
measured by the retarding potential analyzer (RPA). A
planar retarding potential analyzer was flown on DE 2

and this instrument is described in detail by Hanson

et aL [1981]. Substantial variations in the spacecraR

potential, ¢,/c, are known to occur, for example, as the
vehicle traverses regions of elevated electron tempera-
ture, which affect the derived ion velocities in a man-

ner not generally compensated for in the RPA analysis
[Anderson e_ a/, 1994]. Changes in _b,/c can alter the
baseline values for the ram drift by 100 m/s or more,
and we have modified the RPA analysis to account for

these changes.
The components of the ion drift velocity perpendic-

ular to the direction of the spacecraft velocity vector

were measured using an ion drift meter, described by
HeeliJ e$ al. [1981]. This measurement is also sensitive

to _b,/_, although less so than the RPA, and changes in
the ion arrival angle produced by a changing spacecraft

potential are taken into account in determining the ion
drift velocity vector. The ion drifts are then used to

calculate the electric field under the assumption that
E = -V x B. Comparisons between the values of the

electric field measured directly by the Vector Electric
Field Instrument and those derived from the ion drift





GARY ET AL.: FIELD-ALIGNED

have shown generally very good agreement [Hanson e_

,q.,1993].
Magnetic field measurements from DE 2 were made

using a tria._ial flux gate magnetometer, which has been
described in detail by F_r_hir_g e_ al. [1981]. For deter-

ruination of the Poynting vector, it is the perturbation

magnetic field vector produced by currents in the sys-
tem that must be known. The perturbation magnetic

field 5B is defined as the difference between the mea-

sured ambient magnetic field B and a vector spheri-
ca] harmonic model of the Earth's unperturbed field

Bo which incorporates satellite measurements from the

MAGSAT magnetic field mapping mission [Langle and

Esles, 1985]: 6B =B-Bo. The determination of ac-
curate perturbation magnetic field vectors is the ma-

jor procedural obstacle to methodically establishing the
Poynting vector from satellite data. This difficulty is

mostly a reflection of the uncertainty in our knowledge
of the actua] spacecraft attitude, that is, its orientation
relative to the unperturbed field Bo. Efforts to reduce
this error have been made by many spacecraft magne-

tometer investigators in the past, and their approaches
have ranged from estimating the attitude error using
complicated functions involving spacecraft attitude and

position [e.g., McDiarmid et al., 1978] to simple end-

point matching [e.g., Doyle et al. [1981].
The magnitude of the attitude error between that de-

rived from the spacecraft horizon sensors and the mag-

netometer may be several tenths of a degree and vari-
able over the course of a polar pass. For this reason,
it is not unusual for the perturbation magnetic fields

to be biased by several hundred nanoTesla due to these

attitude errors. Compensations for these errors can be
made if it is assumed that (1) the total attitude error

changes slowly over a polar pass, and (2) the natural

perturbation magnetic field below about 50 deg invari-
ant latitude is small. The first assumption generally

appears to be true in that while a single attitude cor-
rection made at the beginning of a polar pass is not suf-
ficient to _level" the magnetic field base line at the end

of the pass, the error appears to grow steadily over the

course of the pass. The second assumption also appears
to be reasonable in that the sum of the magnetic fields

associated with the magnetopause currents, the tail cur-

rent systems and the Sq currents should not be any

larger than several tens of nanoTesla at mid-latitudes.
We therefore determine a new base line for the mag-

netic field perturbations by fitting a cubic spllne to the

magnetometer output with four anchor points located
at invariant latitudes sufficiently below the auroral oval

to escape influences from field-aligned currents on both

the entering and departing sections of the high-latitude

pass. This curve is now assumed to be a realistic base
line for the intrinsic magnetic field, since it takes into

account possible inaccuracies in both spacecraft orien-
tation and in the model field. We typicany choose the

anchor points as near to 40 deg invariant latitude as
the data allows. The difference between the measured

field and the spline fit in these regions is less than 50

nT, and we have no reason to expect this uncertainty to

POYNTiNG FLUX OBSERVATIONS !1,419

increase in the high latitude region where the Poynting
flux is being determined.

In assessing the total uncertainty in our results, we
must examine the combined effect of our uncertainties

in determining the magnetic and electric fields. If we de-
note _.he uncertainty in the perturbation magnetic field

as fl and the uncertainty in the electric field as e, then

the true (as opposed to measured) Poynting vector can
be written as

= l(z-4-e) × (SB ±_3). (1)STrue

Combining all terms containing • and _3 we can arrive

at the following estimate for the maximum uncertainty

in the magnitude of ST,ue (AS) :

as = ± 6m ± (2)

Our uncertainty in the field-a]igned Poynting flux de-

pends not only on the product of the uncertainties •
and fl but on their product with E and 6B as well. In
order to gain some intuition as to the relative size of
the uncertainty, we can take the ratio of AS to our ca]-

culated value of S= x_(E 5B):

fl c-- = ± ± gTB (3)

For the perturbation magnetic field, we estimate 50
nT to be the maximum cumulative uncertainty, while

for the electric field we take 2 mV/m to be the cumula-

tive uncertainty. The sensitivity of the Poynting flux to
the measured data is immediately apparent, especially

to the determination of the perturbation magnetic field,

and a]lows us to place confidence bounds on our anal-

ysis. As an illustration, a calculated Poynting flux of

OE-8 ION DRIFT VELOCITIES

MLT V ILAT NORTHERN HEMISPHERE

DAY 82151 UT 5:32 ORBIT 4495
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Figure 1. Polar plot of horizontal ion drift velocities for
orbit 4495.
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1 _mW/m 2 c0rresponding to 6B = 200 nT ,_nd E = 6.3

mV/m gives _ _ 0.60, that is, a possible error of 60

percent_ "whereas typical auroral sone values of S _, 20

mW/m2"with 6B = 500 nT and E = 50 mV/m lead to

_incerta_nty of about 14 percent.

Data Analysis

We have selected six high latitude passes of Dynamics

Explore: 2 to illustrate the variation in the large scale

Poynting flux along the spacecraft track and the role

that this parameter may play in revealing the conditions

under which energy exchange between the ionosphere

and the magnetosphere can be drastically different. The

chosen passes lie approximately along the dawn-dusk
meridian. We have chosen a coordinate system in which

the positive z direction is always along the spacecraft

velocity vector (ram direction or meridional), positive

!/is always upward (out of the ionosphere), z makes up

the remaining (zonal) component of the right-handed

system. For each orbit we present the magnetometer

data used in the calculations before and after the base

line alterations, together with the spline curve taken as

the new base line. The field-aligned Poynting flux is

shown together with the horizontal ion drift velocities.

Poynting's theorem for steady state conditions ap-

plied to s single flux tube bounded by the satellite at

top and the base of the ionosphere at bottom reads

fs,, ._=- f E.JdV, (4)

which relates the surface integral of the field-aligned

day 82151
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519 523 527 531 535 539 543 547

J
(b)

>

>_

Up
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12=
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_........ ;....
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Figure 2. Ion drift velocity components for orbit 4495 : (x) rash, (b) vertical, a_d (c) cross-track; (d-
f) perturbation magnetic field components u measured and alter spline fit; a_d (g) field-aligned Poynting

flux S u = S - ]3o. All quxntities are in spzucecra.ft coordinates.
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Poyntin8 fluxS[[s_:rossthe boundary to the energy con-
versionrate within the volume. With _ pointing out-

ward everywhere, and assuming that no energy flows

out the bottom of the region,a measurement of Sllat

the top ofthe regionisequal tominus the rateofenergy

conversion below [Kelle_l, et al., 1991].
The right-hand side of (4) can be written [e.g., Th.yer

a_ Vic_'e_l, 1992] as

/E .v=/E, xB) v,(5)
where E' is the electric field in the frame of the neutrals

and is relatedto the measured electricfieldE by the

transformation E' = E + U x B. This equation may be

furtherexamined by decomposing the current density

J into Hall and Pedersen components, afterwhich (5)

becomes

f E.JdV =/[¢PE '2 - cpU. (E' × B) +¢H BU. E']dV.
(S)

Equation (6) makes explicitthe interplaybetween the
electricfieldE* typicallyoriginatingin the magneto-

sphere and the neutralwind velocityU, as well as the

weighting of the energy conversionrateby the conduc-

tivities.It isinterestingthat there isa term weighted

by the Hall conductivity,a factoften neglected in as-

sessments ofE •.J.

The firstterm in (6) givesthe contributionto the

energy conversionrate from frictionalheating between
the ions and the neutrals,leading to elevatedtemper-

atures from increasedthermal motion. This may also

be termed the Joule heating rate or Joule dissipation

rate,although thereisa certainlack of consistencyin

the widespread usage of these terms. The second and

thirdterms in(6)describe the rateofchange ofkinetic

energy ofthe neutralgas due to collisionswith the ions.
Given that our assessment ofthe field-alignedPoynt-

ing fluxiscorrect,we see that theremust be three gen-
eral cases of interestin looking at the data: S[l < 0

(intothe ionosphere,ionosphericload),SIr> 0 (out of

the ionosphere,ionosphericgenerator),and SIr--0 (no

net energy conversion).Equation (6) demonstrates the

requirements for these conditions,and we see that the
directionofthe field-alignedPoynting fluxisprincipally

dependent upon the relativeorientationsof U and E _.
Observationally,we take the ion driftvelocityV to be

indicativeof the overallnature of E * since,in the F

region where our measurements are made, E l = (U-

V) ×B. While we are unable to discriminate between
the effects of the individual terms in (6), we can make

some statements from the more general equation (5).
Whenever the helght-integrated quantity U.{3xB) is

positive, the entire quantity E..] is positive and electro-
magnetic energy is being converted into particle ther-
mal and kinetic energy within the volume. Electro-

magnetic energy generation within the volume requires
that U oppose the J × B force and that the flax tube-

integrated magnitude of U.(J×B) be greater than that
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ofU-J (=EPE'2), signifyingthe dominance ofthe neu-

tralwind over the magnetosphere as the driverof the

energyflow.The conditionsforSit< 0 are perhaps best

exemplifiedduring times ofsouthward IMF where a well

defined two-cellconvection pattern generallyforms in

the ionosphere. The large scaleelectricfieldisgener-

allyimposed from the magnetosphere as indicated by

the organized ion d_9,s. We can expect SIr< 0 in the

polarcap, where both V and U are generallyantisun-
ward with V > U, and in the auroral zone where V

and U are oppositelydirected. We present two cases
which are typicalof these conditionsand in which the

sunward and antisunward ion driR velocitiesexceed 1

kin/s,much largerthan we would expect neutralwind

velocitiesto be.
The firstcase presented isorbit 4495 from May 31,

1982.The satellitepassesthrough the daysidenorthern

high ktitude summer ionosphere,moving from dusk to
dawn at altitudesdescending from 640 to 365 kin. The

iondriftvelocities,seenin the polardialofFigure 1 and

as separate components in Figures 2a-2c,show a char-

acteristictwo-cellconvection pattern associatedwith a

steady southward IMF, suggesting that the magneto-

sphere isin firm controlof the circulationin the iono-

sphere. Hourly averaged values of the IMF indicate
that the IMF was infactsteady,although not strongly,

southward during thistime.

Figures2d-2fshow the threecomponents ofthe mag-

neticfieldperturbationmeasured from DE 2 together

with the correctedperturbationsobtained by establish-

ing a new base line for the measurement. The origi-

nallymeasured perturbationsare indicatedby the dot-
ted curve.Itcan be seen thatsubstantialperturbations

existat invariantlatitudesbelow 50° where we would

expect such perturbations to be small. The dashed
curve shows the cubic spllnebase linedetermined by

requiringthe perturbation to be zero at 45° and 52°

DE-B faN DRIFT VELOCITIES
MLT V ILAT SOUTHERN HEMISPHERE
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Figure 3. Polarplotofhorizontaliondriftvelocitiesfor
orbit4337.
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invaxlant latitude. The resulting magnetic field pertur-

bations used in the calculation of the Poynting flux are

shown by the solid curve. The result of this correc-

tion procedure has the most pronounced effect on 6Bx

with s maximum difference between corrected and un-

corrected values of about 200 nT. Notice, however, that

this correction procedure essentially preserves the gra-

clients in 6B from which field-aligned currents (FAC)

would be determined. The presence of region 1 and re-

gion 2 FAC can be clearly seen in the horizontal compo-

nents of the perturbation magnetic field, especially 6Bs

(figure 2f). The satellite passed between the large scale
current sheet on the duskside at roughly 0527 UT, with

the region 1 current associated with the 6 B gradients

just poleward and the region 2 current sheet associated

with the equatorward gradient [e.g.,gcneg_i eg ¢l., 1983].

On the dawnside, the region I current was apparently

spread over a larger extent as indicated by the smaller

gradient, and is more structured than on the dusk side.

The high degree of correlation between the horizontal

components of the magnetic field perturbation 6Bx and

6Ba suggest that the spacecraft is passing through an

"infinite" field-aligned current sheet at the dusk side

convection reversal. The quasi-sinusoidal signature ev-

ident in the vertical component (_By) is indicative of

the effect of the distant auroral electrojet [ZaneL_i ei al.,

1983]. The cross-track components of V ud 6B have

a correlation coemcient of 0.93 across the entire pass.

This would be expected if the height-integrated Peder-

sen conductivity was uniform [Swiun: e_ a/., 1982], and

for these data the E region below was sunlit.

As can be seen in Figure 2c, the horizontal ion drift

across the polar cap is largely antisunward _nd of suffi-

cient magnitude for us to conjecture that iV 1 > JU] and

that the electric field is primarily magnetospheric, con-

sistent with our expectations for downward Poynting
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Figure 4. Data for orbit 4337 in the same format as Figure 2.
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flux in the polar cap. In the auroral zone, the drift ve-
locities are large and sunward. The observed Poynting

flux is downward along the entire pass across the polar

cap, averaging 6.29 mW/m a over the pass, with maxi-
mum values in the auroral sones of about 82 mW/m 2

on the dusk side and 40 mW/m 2 on the dawn side.

This asymmetry is in accordance with the findings of
Foster et al. [1983] and Vicirrey et al. [1982] on the

local time variation of 3oule heating rates. The dis-
tribution of the field-aligned Poynting flux across the

polar cap, from about 0528 UT to 0536 UT, supports
the idea that appreciable region 1 current closes across

the polar cap with resulting Joule dissipation and mo-
mentum transfer in the region of the lower ionosphere.
This is consistent with previous interpretations of the

horizontal perturbation magnetic field signature across

the polar cap, with the antisunward/tailward extension
of 6Bs in that section of the pass indicating region I
current closure across the polar cap [e.g., McDiar'rnid et

al.,1978]
As we have mentioned, the case of upward, or out-

ward, Poynting flux is indicative of a neutral wind dy-

namo process. The criterion for a neutral wind dynamo
is most likely to be satisfied during times of northward

IMF when the ions are not being strongly driven by
electric fields from the magnetosphere. It is aLso pos-

sible for there to be smaU regions of upward Poynting
flux during southward IMF near the reversal boundaries
where the ion drifts become comparable to the neutral

wind velocities.

We now present a case for which the conditions nec-

essary for upward Poynting flux are apparently met.
Orbit 4337, day 82140, passed across the dayside south-

ern winter ionosphere at an altitude of about 300 km

roughly from dawn to dusk. The IMF was steadily
northward for several hours preceding the pass with an

hourly averaged B, of 1.4 nT for the time of the or-
bit. Figure 3 and Figures 4a-4c show the structured
ion drifts typical of northward IMF, winter conditions,

and the perturbation magnetic field signatures seen in

Figures 4d-4f do not indicate the presence of large scale
fidd-aligned currents. The dectrodynamic coupling be-
tween the magnetosphere and ionosphere is far weaker
in this instance, having no well-defined convection pat-

terns or large field-aligned current systems. The plot of

Sit (Figure 4g) reveals two relatively large scale regions
as well as a few isolated locations where the Poynting
flux is directed upward. The regions of upward Poynt-

Lug flux are well correlated with regions of antisunward
ion drift velocities, as we expect from our earlier argu-

ments. The largest region of upward SLI, between 2023
and 2024 UT, spans 427 km along the satellite track

with a peak value of 3.6 mW/m 2 and an average value
of 1.54 mW/m 2- The second region, between 2027 and
2028 UT, represents a smaller energy conversion rate,
with a maximum value across the 480 km stretch being

only 1.55 mW/m 2 and an average value of only 0.57
mW/m 2. This weaker region marks the extreme edge of
confidence in our ability to determine the field-aligned

Poynting flux from DE 2 measurements with the cox-
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Figure 5. Polar plots of the horizontal ion drift veloci-
ties for orbits (a) 7436, (b) 7437, and (c) 7438.
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Figure 6. Perturbation magnetic field components in spacecraft coordinates and field-Migned Poynt-

ing flux for orbit 7436: (a) 6B= or ram, (b) 6B_ or vertical, (c) 6Bz or cross track, and (d) all.

rection procedures we have described, with an average
uncertainty determined from (1) of 55 percent.

The condition under which $11 may equal 0, imply-
ing that no net energy conversion is taking place in the
flux tube volume, is for E'.J = -U.(JxB). SII will _Lso

equal sero if the ion drift, and hence electric field, is
sero. Note that this may be achieved by changing co-

ordinates to a system that is moving with the ions, so

that the Poyntin8 flux is dependent on the choice of
coordinate system. In the frame co-rotating with the

Earth, however, this condition is unlikely to be met un-
der steady state conditions in that while the electric

field may change sign over a very short spatial scale, as
in a shear reversal, there is no point where the ions are

actually stationary. In general, Sll = 0 indicates that
the rate of frictional heating of the ions is balanced by
the rate of bulk flow kinetic energy transfer between the

ions and the neutrals due to collisions. This condition

may mark the establishment of a sustained neutral wind

=flywheel", where the neutral particles have been accel-
erated by the ions until they are moving at comparable
speeds, thus in some sense storing the energy until the

bulk ion flow changes in response to varying electrody-
namic conditions. Observation of the development of

such a situation requires consecutive data sets during a
time of stable conditions.

The orbits shown in the polar dials of Figure 5 rep-

resent a sequence of three southern hemisphere summer
dayside passes, all on day 82342 between 1700 UT and
2100 UT. The spacecraft measurements shown lle en-

tirely in daylight and the conductivities in the polar

cap ionosphere are dominated by ionization produced

by solar UV radiation. Under these conditions, we may
assume that the principal differences between orbits in

the sequence are attributable to variations in the elec-
tromagnetic energy driver rather than in the conductiv-
ity of the ionosphere, at least on the global scale which
we are considering here. Therefore changes in the iono-

spheric energy conversion rate axe more a reflection of
changes in IMF conditions and in the motion of the
neutral wind.

The IMF was strongly southward for at least two

hours before the beginning of the sequence and contin-
ued to be so until around 2000 UT. Hourly averages

for B, during this interval range from -7.4 to -10.0 nT,
after which B, began to swing northward. The hourly

average for B= during the third orbit was near sero,
and reached 3.6 nT in the following hour. The ion drift
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Figure 7. Perturbation magnetic field and field-aligned Poynting flux for orbit 7437 in the same

format as Figure 6.

velocities in all three cases suggest a strong two-cell

convection pattern, with the drifts increasing from the

first orbit to the second and then decreasing between

the second and final orbits. In all three orbits, the per-

turbation magnetic field signature contains well defined

region 1 and region 2 field-aligued currents. The field-

aligned Poynting ftux in each case k almost everywhere

directed into the ionosphere and is of smailer magnitude

in the polar cap than in the auroral zones.
For the first orbit in the sequence, orbit 7436, Sii

across the polar cap is dominantly downward and has

an average value of 3.7 mW/m 2. There is s region of up-

ward Poynting fiux poleward of the duskside convection

reversal boundary, as seen in figure 6d, centered near

1715 UT. The average value for Sii across this region

is 1.4 mW/m 2, end it spans about 1050 km along the

satellite track. Orbit 7437 took place near the conclu-

sion of the period of strongly southward B+, and it can

be seen in the polar plot (figure 5b) that there is a sub-

stantial increase in ion drift velocity _tom the previous

orbit, implying that the ions are being more strongly

driven by the magnetosphere. The observed values for

Sii across the polar cap are consistent with this inter-

pretation, with an average value of 8.7 mW/m 2- The

region 1 and region 2 current signatures in 6B seen in

Figures 7a-7c in this case are consistent with substan-
tial field-aligned current closing across the polar cap,

as evidenced by the very sharp gradient in 5Bz on the

duskside.

In the final orbit, 7438, the ion drifts have slowed

(Figure 5c) and Sli across the polar cap has an average
value of only 1.37 mW/m 2- Comparison with the plots

of Sit for the three orbits (Figures 6c, 7c and 8c) clearly
demonstrates the marked decrease in the energy conver-

sion rate. This observation, combined with the decrease

in Bz to near zero, leads us to conclude that the ions

and neutrals must be moving at very nearly the same

speed, representing an "undriven" ionosphere in the po-

far cap. Examination of the 6B signature suggests that

the large scale field-aligned currents have greatly dlmin-

ished in magnitude from the previous orbit, and that

much of the region I current could be closing through

the neighboring region 2 current rather than across the

polar cap as indicated by the small values of Sll.

Conclusions

We have undertaken an examination of the electro-

magnetic energy conversion rate in the earth's iono-

sphere by determination of the Poynting vector at points

along the trajectory of a polar orbiting satellite. In so

doing, we have presented a systematic approach to es-





1i.426 GARY ET AL.: FTRLD-ALIGNED POY'NTING FLUX OBSEKVATIONS

day 82342

loooorbit 74385 Perturbation Magnetic Field (n_
I=_ Measured .............

B>o _,_ ................. Sp.linefit .....
..... ....._ Adjusted _

-500 , ::_

-I_o01_3 20'17 2021 2025 2029 2033 2037 2_141

anchor points A: 34.97

419e -_
47.42 -_

40.48 .._

;ooo_ (c) ,._.

-20

-40

UT

(d)

S "Bn (mW/m') i

20:21 20:25 20:29 20:33 20:3720:17 59.2
ILAT 48.0 60.6 74.4 90.0 75.1
MLT 16.9 16.6 15.8 8.45 6.1 5.6
ALT (km) 397 433 465 489 504 510

Figure 8. Perturbation magnetic field and field-aligned Poynting flux for orbit 7438 in the same
format as Figure 6.

tablishing the magnitudes of the electric field and per-
turbation magnetic field, as well as providing error esti-
mates for each quantity and the cumulative uncertainty
of our results. The electromagnetic energy flux is equiv-
alent to the sum of the rates at which kinetic energy is

transferred to the neutral atmosphere -As Lorentz (.I

x B) forcing and at which the atmosphere is heated
by Joule dissipation. Poynting's theorem, applied to

a magnetic flux tube segment bounded at the top by
the satellite and st the bottom by the base of the iono-

sphere, allows the field-allgned energy flux measured at
the satellite altitude to be equated to the rate of electro-

magnetic energy conversion taking place in the volume.
The ionosphere often acts as an active load in the

global high latitude ionosphere-magnetosphere circuit
with energy deposited from the magnetosphere into the
ionosphere. Energy is delivered to the lower ionosphere
when the neutral wind is in the direction of the J x B

force, and it is transported from the region when this

component of the neutral wind velocity is larger than
the ion drift and oppositely directed to the J x B force.

Hence we expect that in the auroral zones, where the ion
drift and neutral wind are generally oppositely directed,

-E:_+ .",7 . _J.

the Poynting flux will be downward and dominated by
the frictional heating rate. Upward Poynting flux, in-

dicative of a dynamo process, may be expected in the

polar cap at times when the neutral wind velocity may
exceed the ion drift velocity. We have presented obser-
vations indicative of each of these drivers, including a

sequence demonstrating the approach of a steady state
neutral wind pattern.

Downward directed Poynting flux with magnitudes

of a few tens of mW/m 2, typical of our observations,
are consistent with a Pedersen conductivity near I0

Mhos and ion drifts of the order of I km/s. It is impor:'

tant to emphasL1e that the adjustments to the measured
data as described here can easily alter the sero line for

the derived Poyntlng flux by a few tens of mW/m 2.
The automated correction procedure that we have out-

lined may be of value to investigators interested in the
absolute magnitude of the perturbation magnetic field'i

or any quantity, such as the Poynting flux, which is

proportional to this magnitude. Such corrections, or
lack thereof, may change observations of the downward

Poynting flux by 50 percent, which may be considered"
unimportant to some investigations. However, such ad_!
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tments can change the magnitude of upward Poynt-

flux by several hundreds of percent, and even the

inferred direction, which may lead to significant inter-

pretive misunderstandings. Assuming that the large

scale neutral wind velocity in the E region win not ex-

ceed a few hundreds of meters per second, we should

not expect upward directed Poyitting flux to exceed 10

mW/m 2 over large spatial scales.
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Interpretation and modeling of the high-latitude electromagnetic

energy flux
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Abstract. An interpretation of the electromagnetic energy flux at high latitudes under steady state
conditions is presented and analyzed through modeling of the large-scale coupling between the

high-latitude ionosphere and magnetosphere. In this paper we elucidate the steady state relation-
ship between the electromagnetic energy flux (divergence of the dc Poynting flux), the Joule
heating rate, and the mechanical energy transfer rate in the high-latitude ionosphere. We also
demonstrate the important role of the neutral wind and its conductivity-weighted distribution with
altitude in determining the resultant exchange of electromagnetic energy at high latitudes. Because

the Poynting flux approach accounts for the neutral wind implicitly and describes the net electro-
magnetic energy flux between the magnetosphere and ionosphere, it is a fundamental measure of
energy transfer in the system. A significant portion of this energy transfer results in Joule heating;
however, the conversion of electromagnetic energy flux into mechanical energy of the neutrals is
also considerable and can in some regions exceed the Joule heating rate. We will show that neglect

of the neutral dynamics in calculations of the Joule heating rate can be misleading. To evaluate
and interpret the electromagnetic energy flux at high latitudes, we employ the vector spheri-
cal harmonic model, which is based on the National Center for Atmospheric Research

thermosphere-ionosphere general circulation model, to provide the steady state properties of the
thermosphere-ionosphere system under moderate to quiet geomagnetic activity. For the specific
geophysical conditions modeled we conclude that (1) the electromagnetic energy flux is pre-
dominantly directed into the high-latitude ionosphere with greater input in the morning sector than
in the evening sector, as supported by DE 2 observations. (2) The Joule heating rate accounts for
much of the electromagnetic energy deposited in the ionosphere with the conductivity-weighted
neutral wind contributing significantly to the Joule heating rate and thus affecting the net electro-

magnetic energy flux in the ionosphere. (3) On average, the mechanical energy transfer rate
amounts to about 10% to 30% of the net electromagnetic energy flux in the auroral dawn, dusk,

and polar cap regions, acting as a sink of electromagnetic energy flux in the dawn and dusk sectors
and a source in the polar cap. (4) Weak regions of upward electromagnetic energy flux are found
near the convection reversal boundaries where the mechanical energy transfer rate exceeds the
Joule heating rate. In general, large upward electromagnetic energy fluxes may be rare, as the

always positive Joule heating rate increases irrespective of the source of electromagnetic energy
flux; that is, neutral dynamics contribute directly to the Joule heating rate.

1. Introduction

The magnetosphere-ionosphere (M-I) system at high latitudes
can exhibit a diverse character in the distribution of currents and
electric fields and in the population and energy of plasma

particles. These features help to define the various regions of the
M-I system. These regions are coupled through the exchange of
energy between the electromagnetic field and the plasma. The

energy exchange involved in this process can be described in
terms of Poynting's theorem,

B2

+ 70

v
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where the first term is the time rate of change of the electro-
magnetic energy density within the volume, the second term is the
divergence of the electromagnetic (Poynting) energy flux within
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the volume, and the third term is the volume energy transfer

rate, The derivation of Poynting's theorem comes directly from

Maxwell's equations using the identity V.(ExB)

-- B.(V x E) - E.(V x B). For magnetospheric-ionospheric

applications the magnetic field energy density, to a very good

approximation, greatly exceeds the electric field energy density.

Poynting's theorem, given by (1), can then be written as

v ,u0

+fffj,EdV = 0 , (2)
v

with o_B representing the perturbation magnetic field due to the

large-scale ionospheric current system [see Kelley et aL, 1991 ].

Poynting's theorem has been used to provide a general
description of the energy exchange between the solar wind and

magnetosphere [e.g., Hill, 1983; Cowley, 1991 ], for the interpreta-

tion of time-varying electromagnetic fields [e.g., Fraser, 1985],

and, more recently, for the evaluation and interpretation of large-

scale energy transfer in the ionosphere [e.g., Cowley, 1991; Kelley

et al., 1991; T_yer and Viekrey, 1992; Gary et al., 1994]. For

investigations concerned with high-latitude ionospheric energetics,

the electromagnetic energy flux described by Poynting's theorem

is a fundamental quantity because it describes the energy

exchange between the magnetosphere and ionosphere. Joule heat-

ing and the bulk motion of the neutral gas in the high-latitude

ionosphere are a direct result of this energy exchange. It is this

more recent use of Poynting's theorem that will be developed
further in our modeling study.

As stated by Cowley [1991], Poynting's theorem in the steady

state demonstrates that any increase in plasma energy that occurs

in one region of space must be at the direct expense of plasma

energy that is lost in another, where the two regions are connected

by a current tube. Thus source regions where energy is transferred

from the plasma to the electromagnetic field (J • E negative) must

be balanced by sink regions of energy transfer from the

electromagnetic field to the plasma (J • E positive). On the basis

of this premise and the magnetic coupling of the magnetosphere

and ionosphere at high latitudes, source or sink regions of elec-

tromagnetic energy flux in the high-latitude ionosphere must be

matched by sink or source regions in the magnetosphere.

Frequently, the ionosphere is treated purely as a resistive load

acting as a sink of electromagnetic energy being converted to

thermal energy of the gas. This view, however, neglects the

reactive nature of the high-latitude ionosphere due to the presence

of neutral winds and their potential contribution to the electro-

dynamics. The neutral wind acts as a modifying influence in

determining how much Poynting flux is required by the

magnetosphere to power the dissipation processes in the high-

latitude ionosphere and may potentially make the ionosphere a

source of electromagnetic energy [Thayer and Vickrey, 1992].

Recently, Kelley et al. [1991] and Gary et al. [19941 have shown

through low-altitude, polar-orbiting satellite observations that the

large-scale transfer of energy and momentum via the electromag-

netic field between the solar-wind-magnetosphere and the

ionosphere-thermosphere at high latitudes can be determined by

evaluating the dc component of the field-aligned Poynting flux.

The derived results, interpreted from observations, have shown

extensive regions of electromagnetic energy flux into the high-

latitude ionosphere demonstrating the magnetospheric dynamo as

the dominant electrical energy source. However, electromagnetic

energy flux out of the ionosphere over large scales has also been

observed [see Gary et al., 1994]. The outward directed energy flux

can be interpreted, under steady state conditions, as having a

generator in the ionosphere, presumably through the neutral wind
dynamo mechanism.

Thayer and Vickrey [1992] investigated the neutral wind

contribution to the high-latitude energetics by comparing two

uncoupled systems: a magnetospheric circuit and an ionospheric

circuit. They quantified the electrical energy contained in each

system separately and demonstrated the importance of the neutral

wind dynamo as a potential source of electrical energy at high
latitudes. In that study, Thayer and Vickrey [1992] demonstrated

the influence of the neutral wind on the Poynting flux by writing

the steady state form of Poynting's theorem as

-f.0 "v.(E×a'B) ,IV =fffj. E dV
v /ao v

=III[J-E'+
v

where E' is the electric field in the frame of reference of the

neutral gas and E is the electric field in the inertial frame. From

(3) the divergence of Poynting flux is equal to the volume energy

transfer rate which is equal to the sum of the Joule heating rate

and the mechanical energy transfer rate. As a positive definite

quantity, the Joule heating rate is a sink of electromagnetic energy

flux in the ionosphere, while the mechanical energy transfer rate

could be a sink or source, depending on the specific relationships

among the neutral wind, conductivity, and electric field. By

applying Gauss' theorem and following the arguments presented

by Kelley et al. [1991 ], the divergence in the Poynting flux may be

related to the vertical or field-aligned Poynting flux.

Equation (3) has important implications for studies of iono-

spheric and thermospheric energetics that involve a complex

coupling among the conductivity, electric field, and neutral wind.

The determination of the electromagnetic energy flux is further

complicated by the different response times of each of these

parameters to changes in the M-I system. The response time for

conductivity and neutral wind is also altitude dependent with, for

example, the neutral wind responding more rapidly in the F region

than in the E region to changes in the electric field. Therefore

determination of the field-aligned Poynting flux from measure-

ment must insure that a quasi steady state condition is reached in

order to interpret those results using the source-sink concept.

However, the different response times, specifically the long

response of the neutral wind compared to changes in the electric

field and conductivity, allow for the neutral wind affects on the

M-I system to be investigated. This was first demonstrated by

Lyons et al. [19851 by evaluating the polar cap currents resulting

from "spun-up" neutral winds and setting the ion convection to

zero. Deng et al. [19931 investigated the effects of the time-

dependent neutral wind dynamo on the high-latitude ionospheric

electrodynamics after a geomagnetic storm using the National

Center for Atmospheric Research (NCAR) thermosphere-
ionosphere general circulation model (TIGCM) and found that the

neutral wind contributes significantly to the ionospheric current

system after the storm. They also calculated the electromagnetic

energy flux but, unfortunately, used the independent generator

calculations presented by Thayer and Vickrey [1992] and not the

coupled expression. More recently, Lu et al. [1995] have used the

assimilated mapping of ionospheric electrodynamics (AMIE)

technique to simulate substorm and equinox conditions and
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evaluatethehigh-latitudeelectromagneticenergyfluxusingthe
coupledexpressiondescribedbyThayer and Vickrey [1992].

It is important to make the distinction between the divergence

in the Poynting flux and the Joule heating rate of the gas. if the

ionospheric current density and electric field are measured in the

inertial reference frame, then the flux of electromagnetic energy

describing the heat and momentum transfer of energy between the

magnetosphere and ionosphere can be determined (as demon-

strated by Kelley et al. [1991] and Gary et al. [1994]). It is

extremely important to note that an evaluation of the volume Joule

heating rate requires a measure of the electric field in a reference

frame moving with the neutral gas at all altitudes. This electric

field is not a quantity that is directly measured. The common

practice of computing _pE 2, where E is the magnitude of

the electric field in the inertial frame and ]_p is the height-

integrated Pedersen conductivity, is not necessarily a measure of

the Joule heating rate. We point out here that substantial errors in

both the magnitude of the Joule heating rate and in the momentum

transfer rate to the neutral atmosphere may arise by making this

assumption. However, the presence of the neutral wind is

implicitly included in a measure of the field-aligned Poynting flux.

Therefore it is important to investigate the exchange of

electromagnetic energy in the high-latitude ionosphere using this

source-sink concept of Poynting's theorem to provide further

insight into the M-i electrodynamic system. Here we will pursue a

modeling effort to treat the coupled aspects of the M-I system by

evaluating the exchange of electromagnetic energy in the high-

latitude ionosphere. As part of this effort, we demonstrate the

important electrodynamic role of the neutral wind and its

conductivity-weighted distribution in altitude. We also develop

further the relationship of Poynting's theorem to ionospheric

studies of Joule heating and neutral wind dynamics to elucidate

the sources and sinks of electromagnetic energy in the high-

latitude ionosphere.

2. Approach

Adopting the source-sink concept, we apply Poynting's
theorem to the high-latitude ionosphere where the ionosphere is

directly coupled to the magnetosphere through highly conducting

magnetic field lines. Electromagnetic energy flux is transferred
between the source and sink regions of the magnetosphere and

ionosphere via electric fields and field-aligned currents. To study
the sources and sinks of electromagnetic energy in the high-

latitude ionosphere under steady state conditions, we use the

expression for Poynting's theorem described in (3). To model this

expression, we use the vector spherical harmonic (VSH) model of

Killeen et al. [1987] to provide the necessary thermospheric and

ionospheric parameters.
The VSH model is based on a spectral representation of the

output fields from the NCAR-TIGCM simulations. The NCAR-
TIGCM is a time-dependent, three-dimensional model that solves

the fully coupled, nonlinear, hydrodynamic, thermodynamic, and

continuity equations of the neutral gas self-consistently with the

ion energy, ion momentum, and ion continuity equations [see
Roble et al., 1988, and references therein]. A simulation is

uniquely determined by the input parameters to the model (i.e.,
EUV and UV fluxes, auroral particle precipitation, high-latitude

ionospheric convection, and lower thermospheric tides). During a

model run the particle fluxes and the cross polar cap potential may

be specified to remain fixed throughout the 24-hour model

simulation. This type of model simulation is referred to as a

diurnally reproducible state, meaning the model parameters are

reproducible over a model day, and the "UT effects" associated

with the diurnal migration of the geomagnetic pole about the geo-

graphic pole are incorporated. Although the diurnally reproducible

state may not actually occur in nature, due to shorter-term varia-
tions in the solar wind/magnetosphere interaction, the model

simulation does provide a description of the global, UT-varying

thermosphere-ionosphere system during a particular geophysical

situation. A set of NCAR-TIGCM runs have been expanded into

VSH model coefficients that can be used to represent a range of

geophysical conditions.
In the TIGCM formulation the magnetosphere is treated as a

generator delivering a fixed voltage to the ionosphere using the

Heelis ion convection model [Heelis et al., 1982]. The parameteri-

zation of the ion convection pattern is tied to estimates of the total

auroral hemispheric power input from the National Oceanic and

Atmospheric Administration (NOAA) ! TIROS particle flux meas-

urements (Hp index). For the model simulation, any charge

separation in the ionosphere due to neutral winds or gradients in

conductivity are closed through field-aligned currents. Thus, for

calculations of the electromagnetic energy flux, the neutral winds

contribute to the current system while the electric field originates

in the magnetosphere. The model ionosphere is coupled to the

magnetosphere through the imposed electric field and particle pre-

cipitation, but no direct magnetospheric feedback is incorporated
into the model to address how the processes in the ionosphere

influence the magnetospheric response.

In this study a model simulation providing a self-consistent

description of thermosphere-ionosphere processes is used to study

the coupled aspects of the M-I system at high latitudes. This

approach differs from that used by Thayer and Vickrey [1992] in

which the electrodynamic properties of the ionosphere and

magnetosphere were evaluated separately to demonstrate the

potential role the neutral winds could play in high-latitude

electrodynamics. To make our calculations, we define a volume

that covers the area from the geomagnetic pole to the 60°N

magnetic latitude circle and extends in altitude from 110 to

400 km. We assume that the vertical magnetic flux tubes permeate

this volume, each enclosing a 5 ° x 5° latitude / longitude bin. The

calculations are performed at each grid point assuming horizontal

uniformity of the parameters within each 5 ° bin. Applying these

approximations to (3), the expression evaluated at each grid point

in the modeling effort becomes

S z =_j. Edz= _[joE' +un.(J×Bo)]dz , (4)

Z z

where S is the field-aligned Poynting flux. The coordinate

system eZmployed is right-handed, with J directed positive

northward, _ directed positive eastward, and _ directed positive

downward.

The model simulation used extensively in this study is

representative of moderate to quiet geomagnetic activity (Hp index

= 11 GW and cross-cap potential = 60 kV) and solar maximum

conditions (Flo.7 = 220 × 10 -22 W m -2 s-l). Polar plots (from the
model simulation for the December solstice in the northern

hemisphere at 0400 UT) of the electric field magnitude in

millivolts per meter and the height-integrated Pedersen conduct-

ivity in mhos are shown in Plates la and b, respectively, on a

magnetic latitude / magnetic local time grid extending in magnetic

latitude from 60°N to the geomagnetic pole. The electric field

magnitude shown in Plate la represents a two-cell ion convection

pattern with its greatest values found inside the polar cap. The

strong electric field over the polar cap will be used to demonstrate

that significant ion-neutral coupling results in a small downward
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electromagneticenergyfluxthatwouldotherwisebelargeif the
neutralwindswereneglected.Thustheelectricfieldcontribution
tothenetelectromagneticenergyfluxiscompensatedbythe
electricfield'sinfluenceondrivingtheneutralwind.Evidenceof
thiseffectwillbedemonstratedin thefollowingsections.The
distributionof theheight-integratedPedersenconductivityis
structuredacrossthepolarcapwithenhancedvaluesin the
midnightanddawnsectorsanda factorof 3 reductionin
magnitudeinsidethepolarcap.Theenhancedregionsof
conductivityareduetotheNCAR-TIGCMformulationforauroral
particleprecipitation[Rob& and Ridley, 1987].

Plates lc and ld are altitude plots of the local Pedersen and

Hall conductivity in mhos/m along the dawn-dusk magnetic

meridian. The local Pedersen conductivity peaks near 130 km with

enhancements in the dawn and dusk sectors of the E region and

moderate conductivity values in the polar cap in both E and F

regions. The local Hall conductivity is limited to the E region with

peak values near 115 km and an asymmetric distribution across

the polar cap with maxima found in the dawn sector. These

parameters are important contributors to the net electromagnetic

energy flux into the ionosphere and will be used in the evaluation

of (4). The neutral wind contribution to (4) will be discussed in

more detail in section 4. Owing to the coarse 5 ° x 5 ° grid of the

NCAR-TIGCM, the model parameterizations, and the inherent

smoothing of the spectral representation by the VSH model, the

model output variables represent only the large-scale features of

the system, as discussed by Deng et al. [1993].

3. Analysis

We begin the analysis by evaluating the height-integrated

energy transfer rate, J • E, in the high-latitude ionosphere which,

from (4), is equal to the field-aligned Poynting flux. The

relationship of the energy transfer rate or the electromagnetic

energy flux to the electric field, conductivity, and neutral wind can

be shown by expanding (4) to give the expression

= E 2 (unxB)f j, E dz X, , + E. f cyp dz
z z

(5)

+ E.fcrhunlB [dz

z

where op and o"h are the local Pedersen and Hall conductivities

and Z is the height-integrated Pedersen conductivity. The totalP

electromagnetic energy flux calculated from (5) for the model run

described in section 2 is displayed in Plate 2a on a magnetic

latitude / magnetic local time grid in units of milliwatts per square
meter for the northern winter hemisphere at 0400 UT. The

distribution of electromagnetic energy flux shown in Plate 2a is

representative of the field-aligned Poynting flux at high latitudes.

The electromagnetic energy flux is predominantly directed into the
entire polar ionosphere with dawn sector values between 2.0 and

3.0 mW m-z, polar cap values less than 1.0 mW m -2, and dusk

sector values between 1.0 and 1.5 mW m -2. An asymmetry in the

electromagnetic energy flux across the noon-midnight meridian is

apparent in Plate 2a with more electromagnetic energy flux
directed into the ionosphere in the morning sector (0000-1200

MLT) than in the evening sector (1200-0000 MLT) by a factor of

2 or more. Weak regions of negative electrical energy flux or
upward Poynting flux (less than -0.1 mW m -2) are determined

from the model and are located in the regions near the ion

convection reversals. These features of negative electrical energy

flux are caused by the electrical contribution of the neutral wind,

as will be discussed in section 4. If the electromagnetic energy

flux in Plate 2a is integrated over the area of the polar cap, 90 ° to

60 ° magnetic latitude, the total electromagnetic power into the

ionosphere is approximately 3.5 x 10 t IW.

Plate 2b illustrates the total electromagnetic energy flux from a

more geomagnetically active simulation using a cross-cap

potential of 90 kV and an Hp index of 33 GW. The active case has
features very similar to those discussed tor the less active case

shown in Plate 2a, however, the magnitude of the electromagnetic

energy flux in the auroral zone has increased proportionally by a

factor of about 3. The polar cap values in Plate 2b are of similar

magnitude to those of the less active case.

Recently, Gary et al. [1995] provided statistical averages of the

field-aligned dc Poynting flux determined from DE 2 throughout

the polar cap. Using DE 2 data of ion drift velocities and magnetic

fields, the field-aligned Poynting flux was calculated for some 576

orbits over the satellite lifetime using the technique described by

Gary et al. [1994]. The data were sorted for interplanetary

magnetic field (IMF) conditions (northward and southward) and

geomagnetic activity (Kp _<3 and Kp > 3) and binned by invariant

latitude and magnetic local time. In general, it was found that the

average field-aligned Poynting flux is directed into the ionosphere

throughout the entire polar cap, as was determined from the model

simulation. The magnitudes of the averaged Poynting flux are

reasonably reproduced by the model results shown in Plates 2a

and 2b. Asymmetries in the average Poynting flux for both high

and low Kp were determined from the observations with the dawn

and noon sectors having greater values than the dusk and midnight

sectors. The observed asymmetry between the dawn and dusk

sectors corresponds well with that determined from the model.

However, the model also predicts a strong region of downward

Poynting flux in the midnight sector that is not observed in the

data. This may be due to the parameterization of the particle

precipitation used in the model and to the averaging over all
seasons of the DE 2 data.

When averaging the DE 2 data during conditions of only

upward Poynting flux, it was found that the magnitudes never

exceeded -2.25 mW m -2 anywhere within the polar cap. An

interesting feature in the DE 2 data set is the significant

occurrence and magnitude of upward Poynting flux in the

predawn sector during periods of southward IMF and high Kp
conditions. The results of the coupled model shown in Plates 2a

and 2b illustrate much weaker regions of upward Poynting flux
near the convection reversal locations.

The distribution of each of the height-integrated terms given in

(5) along the dawn-dusk magnetic plane in units of milliwatts per

square meter is illustrated in Figure 1 to demonstrate their relative

contributions to the total electromagnetic energy flux shown in

Plate 2a. The total electromagnetic energy flux is given by the

solid line in Figure 1 which shows the asymmetric distribution of

energy flux between the dawn and dusk sectors. The first term on

the right-hand side of (5), term 1, is a positive definite quantity

accounting lor the resistive dissipation of electromagnetic energy

and, as shown by the dashed line in Figure 1, is the dominate term

contributing to the positive or downward flux of electromagnetic

energy into the ionosphere. Term 1 peak values of 2.0 mW m -2

occur in the polar cap with nearly equal enhancements of

1.5 mW m -2 located in the dawn and dusk sectors. The other two

terms in (5) account for the electric field-neutral wind coupling in

the ionosphere and tend to reduce the net flux of electromagnetic

energy directed into the ionosphere. Term 2, the Pedersen term, is

the main contributor to the reduction in the downward energy flux,

as shown by the dotted line in Figure 1, with peak values in the
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rotation of the wind pattern with decreasing altitude, the winds in

the polar cap are in opposite direction to the imposed dawn-dusk

electric field, resulting in a negative energy flux. However, owing

to the more cyclonic behavior of the E region winds, the electric

field and winds in the dawn sector are in the same direction,

resulting in a positive energy flux. Because this term does not

contribute to the Joule heating rate, a positive energy flux is

representative of electrical energy being converted to mechanical

energy, while a negative energy flux is representative of

mechanical energy converted to electrical energy. This term is less

important after height integration, yet it represents a contribution

that is typically not accounted for in studies of electrodynamics at

high latitudes.

The altitude distribution of the net electromagnetic energy flux

per meter along the dawn-dusk plane is displayed in Plate 3d. The

greatest contribution to the electrical energy flux comes from the

E region where term 1 dominates. The dawn-dusk distribution of

positive electromagnetic energy flux per meter in the E region is

skewed toward the dawn sector as terms 3 and 1 contribute

positively in this sector. In the E region dusk sector, positive

electromagnetic energy flux per meter is reduced due to term 2. In

the F region the electromagnetic energy flux per meter is negative

due to the dominating negative contribution from term 2. As will

be shown, a net electromagnetic energy flux is indicative of the

condition where the component of the conductivity-weighted

neutral wind in the E×B direction exceeds the ExB plasma

drift velocity.

4. Discussion

In section 3 we demonstrated that the neutral wind coupled with

the electric field contributes significantly to reducing the dc field-

aligned Poynting flux into the ionosphere, particularly in the polar

cap and dusk sector. If it is assumed that the magnetic field is
independent of height over our altitude range, an effective neutral
wind can be determined to describe the height-integrated neutral

wind profile weighted by the conductivity.

fopuo + Ioh ×u°dz
(6)

Uef f - _ _y.

p

The effective neutral wind from (6) for the model simulation used

above is displayed in Figure 2 with the same format as Plate 2.

The resultant effective neutral wind has a pattern similar to that of

the F region [see Thayer and Killeen, 1993] with speeds reduced

by approximately 50%. There is also a small counterclockwise

twist of the pattern due to the contribution from E region altitudes

(see discussion by Mikkelsen and Larsen [1991]). The weighting

of the neutral wind with height by the ionospheric conductivity

results in a combined influence of neutral wind dynamics and

conductivity variations with altitude.

Using (6), the electromagnetic energy flux may be written in a

more informative way as

_j. Edz = Zp[E 2 - U ff.(ExB)] (7)
z

Expressed in this form, the effective neutral wind acts as a
modifying influence on what fraction of Poynting flux energy

supplied by the magnetosphere is involved in dissipation processes

in the high-latitude ionosphere, as discussed previously. However,
the neutral wind's influence may make the ionosphere a source of

electromagnetic energy (J ° E negative) if the effective neutral

wind has a component in the ExB direction that exceeds the

E× B plasma drift velocity. The negative or upward Poynting

flux regions discussed above are located near the convection

reversal boundaries where the effective neutral wind in the E × B

direction exceeds the plasma drift velocity. At the convection

reversal boundaries there is no Poynting flux because the electric

field is zero. In the polar cap, small or near-zero downward

Poynting flux can also occur, as the effective neutral wind is

antisunward and approaches the velocity of the E × B plasma drift

due to complementary pressure gradient and ion drag forces.

Individual DE 2 orbits of the Poynting flux from Gary et al.

[1994] have shown small and near-zero values for the downward

Poynting flux inside the polar cap.
Thus it is the component of the effective neutral wind in the

E × B direction that is important for energetics in the steady state,

not the effective neutral wind vector itself. Because the effective

neutral wind is very similar to the ExB plasma drift in the dusk

and polar cap regions, an asymmetry in the high-latitude
distribution of the electromagnetic energy flux results. The

influence of the effective neutral wind coupled to the electric field

is illustrated in Figure 1 by combining the results of terms 2 and 3

from (5). Referring to Figure 1, the enhancement of negative

energy flux in the polar cap is a result of the effective neutral wind

having a strong component in the E x B direction. The asymmetry

in the negative electromagnetic energy flux from terms 2 and 3

between the dawn and dusk sectors reflects the dawn-dusk

asymmetry demonstrated by the effective neutral wind pattern

shown in Figure 2. This asymmetry has also been observed in the

F region neutral circulation pattern [e.g., Thayer and Killeen,

1993]. Thayer and Killeen [1993] demonstrated that an ion

convection pattern with dawn and dusk cells of equal and opposite

potential results in an asymmetric neutral circulation pattern with

12

06

I Scaling Vector100 m/s

Figure 2. Polar plot of the effective neutral wind (same format as

Plate 2).
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the dawn cell less organized than the dusk cell. Gundlach et al.

[1988] explain this asymmetry in terms of the disparate balance of

hydrodynamic forces between the dusk and dawn sectors. In

Figure 1 the higher positive values of the net electrical energy flux

(solid line) in the dawn sector demonstrate that the effective

neutral wind is less coupled to the electric field in the dawn sector

than in the dusk sector. Overall, the neutral wind contribution to

the energy flux in the ionosphere is significant, particularly in the

polar cap and dusk sector (as was concluded by Thayer and
Vickrey [1992]).

We have shown that the neutral wind contributes significantly

to the overall electromagnetic energy flux in the high-latitude

ionosphere. However, we have not determined how much the

neutral wind is contributing to the Joule heating of the gas or to

the mechanical energy of the gas. The partitioning of

electromagnetic energy flux into its sinks (kinetic and internal

energy of the gas) and sources (electrical energy caused by the

neutral wind dynamo) can be addressed by evaluating separately

the Joule heating rate and mechanical energy transfer rate

described in (3).

Joule Heating Rate

The Joule heating rate is a positive definite quantity acting

purely as a sink of electromagnetic energy in the ionosphere as

electrical energy is transferred to the internal energy of the gas as
heat. The height-integrated Joule heating rate can be obtained

without approximation given the height distribution of the neutral

wind, electric field, and conductivity as described by the
expression

fj.E,,,z: fj.(E+uo×,,)dz--fo,,(E+u×,)2,,z
Z £ Z

An illustration of the height-integrated Joule heating rate for the

simulation described in the previous sections is given in Plate 4a.

The main features of the Joule heating pattern are enhanced

regions of Joule heating in the auroral oval with maxima in the

dawn and postmidnight sectors and relatively weak enhancements

in the dusk sector and inside the polar cap. The Joule heating rate

displays an asymmetric pattern in the auroral zone with the Joule

heating rate in the dawn sector a factor of 3 greater than in the

dusk sector. Comparing these results with the electromagnetic

energy flux calculations given in Plate 2a, we find that the

magnitude and pattern of the Joule heating rate are very similar to

the electromagnetic energy flux. Thus most of the electromagnetic

energy flux directed into the ionosphere is dissipated as heat under

the conditions of this simulation. That is not to say that the neutral

winds contribute insignificantly to the distribution of the

electromagnetic energy flux at high latitudes but that the winds are

contributing most to the Joule heating rate of the gas.

To elucidate the impact of the neutral wind on the Joule heating

rate at high latitudes, a calculation of the Joule heating rate

neglecting the neutral wind is shown in Plate 4b. Neglecting the

neutral wind has its greatest impact in the dusk sector and central

polar cap where the Joule heating rate is overestimated by as much

as a factor of 3. This makes the point that although the electric

field or conductivity may be enhanced in these regions, the neutral

winds are also strongly coupled to the electric field, resulting in a

much lower Joule heating rate than might be anticipated if the
winds are ignored.

Because the Poynting flux approach implicitly accounts tor the

neutral wind and describes the net electromagnetic energy flux

between the magnetosphere and ionosphere, it is a fundamental

measure of energy transfer in the system. As we have just shown,

the Joule heating rate is a significant part of the electromagnetic

energy flux. Given a better understanding for the quantities joE

(the electromagnetic energy flux) and j.E' (the Joule heating

rate), it is worth reviewing the approaches taken by many

investigators in evaluating empirically the Joule heating rate in the

high-latitude ionosphere and how these approaches relate to the

electromagnetic energy flux. These investigations are mainly to

quantify the height-integrated Joule heating rate to describe the

change in the internal energy of the gas caused by the dissipation

of electrical energy in the ionosphere. Because of the difficulty in

determining the neutral wind with height, approximations to the

neutral wind are typically made when calculating the Joule heating

rate from measurements. However, the manner in which the

approximation to the neutral wind is treated can result in different

interpretations for the evaluated Joule heating rate and,

subsequently, the electromagnetic energy flux.

For the case when the height distribution of the conductivity

and electric field (typically assumed independent of height) are

known and the neutral wind is assumed to be zero, the form of the

height-integrated Joule heating rate is J.E' = J.E = _pE 2.

This form of the equation represents the electromagnetic energy

flux and means that the mechanical energy of the gas is zero. Thus

electromagnetic energy from the magnetosphere described by the

divergence in the Poynting flux is dissipated entirely in the

ionosphere (acting purely as a resistive load described by the

height-integrated Pedersen conductivity) as thermal energy. This

can be considered the standard approach used in many

investigations of high-lafitude energetics [e.g., Banks et al., 1981;

Foster et al., 1983]. We have demonstrated in Plate 4 that this

assumption can be quite misleading lor the conditions modeled in

this simulation, particularly in the dusk sector and the central polar
cap.

A different interpretation results for this case if the height

distribution of the current density, instead of the conductivity, is

known. For instance, if the current distribution is determined by

solving the expression j = ene(Vi-Ve ) from measurements at

different altitudes, say, from radar measurements [e.g., Kamide

and Brekke, 1993], and the neutral wind is assumed zero, then the

height-integrated Joule heating rate is actually the total

electromagnetic energy flux converted, dissipated, or generated in

the ionosphere. This can be seen more clearly by expressing the

current density in the form j : o. (E + un × B). This shows that

the height distribution of the neutral wind is implicit within the

measurement ofj. Also, the Joule heating rate is a positive definite

quantity, but the determination of j • E could be of either sign, as
discussed by Thayer and Vickrey [1992]. The same result occurs if

the height-integrated current density and the electric field are

determined from a satellite measurement of E and fiB, exemplified

by the recent DE 2 field-aligned Poynting flux results described by
Gary. et al. [ 1994].

In more general terms, if the neutral wind is contributing at all
to the energetics, it is implicitly contained within the current

density and the electric field; the distribution between these two

depends on the electrical coupling between the ionosphere and

magnetosphere. Irrespective of whether neutral wind contributions

are contained in the current density or electric field, their effects

on the net electromagnetic energy flux are accounted lor if both

the current density and electric field are determined. Furthermore,

the measure of the electromagnetic energy flux is a more

fundamental quantity than the Joule heating rate and may be more

accurately determined from spacecraft or ground-based
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instrumentscapableof measuringtheelectricfieldandthe
ionosphericcurrentdensity.

MechanicalEnergyTransferRate
Themechanicalenergytransferrateiseitherasinkorsourceof

electromagneticenergyflux,dependingonwhetherelectro-
magneticenergyisconvertedintothebulkmotionoftheneutral
gas(sink)orgeneratedbythemotionoftheneutralgasthrough
dynamoaction(source).Inthissteadystatemodelsimulationthe
conductivity-weightedneutralwindactsasanelectricalsourceby
contributingtothecurrentdistributionintheionosphere.Asasink
ofelectromagneticenergy,theconductivity-weightedneutralwind
ispoweredbytheJxB force.Thesignofthemechanicalenergy
transferrateillustrateswhethertheneutralwindis opposite
(negative)orin thedirectionof(positive)theJ×B force.A
negativemechanicalenergytransferratewouldindicatethatthe
neutralwindsareopposingthe JxB forceandenergyis
transformedfrommechanicalformtoelectricalformandvice
versa.

Figure3isaplotoftheheight-integratedmechanicalenergy
transferrate,Jouleheatingrate,andthetotalelectromagnetic
energyfluxalongthedawn-duskplane,similarin formatto
Figure1.Theheight-integratedJouleheatingrateinFigure3
(dashedline)accountsformuchoftheelectromagneticenergy
fluxintotheionosphere(solidline),aswasdemonstratedby
Plate4a.Themechanicalenergytransferrateispositiveinthe
dawnanddusksectorsandnegativeinthepolarcap.Thepositive
mechanicalenergytransferratein thedawnanddusksectors
thereforeactsasasinkofelectromagneticenergy.Hereelectrical
energyisbeingconvertedtothemechanicalenergyofthegasin
anefforttomaintainsunwardplasmaflowinthesesectors.Inthe
polarcapthemechanicalenergytransferrateactsasasourceof
electricalenergy,asthewindsarecomplementedbypressure
gradientandiondragforces.Figure4 isaplotof thepercent
contributionfromtheJouleheatingrate(dashedline)andthe
mechanicalenergytransferrate(dottedline) to thenet
electromagneticenergyflux.Thepercentrelativecontributionof
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theJouleheatingrateandmechanicalenergytransferrateis
determinedbytheexpression100IJI/ (IJI + IMI) and 100 IMI /

(IJI + IMI), respectively. In the dawn and dusk sectors the contri-

bution from the mechanical energy transfer rate varies between 10

and 30%. In the polar cap, where the mechanical energy transfer

rate is negative, the contribution to the electromagnetic energy

flux is also between about 10 and 30%. In the locations near the

ion convection reversal boundaries the mechanical energy transfer

rate can contribute as much as the Joule heating rate, allowing for

the possibility of a net upward Poynting flux.
In steady state a net upward (negative) electromagnetic energy

flux can only be generated by a negative mechanical energy

transfer rate that exceeds the Joule heating rate. However, a net

electromagnetic energy flux directed downward into the

ionosphere (positive) still allows for the generation of electrical

energy in the ionosphere (that is, the mechanical energy transfer

rate may still be negative). This is because when the neutral wind

opposes the J x B force, resulting in a negative mechanical energy

transfer rate, the Joule heating rate increases and becomes even

more positive. This can be seen if we expand the expressions for

the mechanical energy transfer rate

In ./j×B)dz=-E.Io(u ×B)"z+ 'J  uol l z
z

z
Z

z

(9)

and the Joule heating rate

Z
z

+I (u ×B)' (lO)
Z

The addition of (9) and (10) results in the expression for the

electromagnetic energy flux given by (5). It can be seen from the

1.6 .._ --- Joule heating rate..................... ! ............. !........... Mechanical energy rateIE 1.4 i
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Figure 3. Height-integrated mechanical energy transfer rate, Joule heating rate, and total electromagnetic energy

flux along the dawn-dusk magnetic plane (same format as Figure 1).
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Figure 4. Percent contribution from the Joule heating rate and the mechanical energy transfer rate to the net
electromagnetic energy flux.

two equations that any negative contribution to the mechanical

energy transfer rate provided by the first and last terms of (9)

result in a more positive Joule heating rate. The Hall term given
by the second term in (9) is the only independent contributor in the

mechanical energy transfer rate equation that would directly
influence the net electromagnetic energy flux. However, the

height-integrated Hall term was shown in Figure 1 to be a minor

contributor to the net electrical energy flux. As was shown earlier

by (7), the only time the net electromagnetic energy flux can be

Upward is when the height-integrated, conductivity-weighted

neutral wind in the ExB direction exceeds the ExB plasma

drift velocity. This would cause term 3 in the mechanical energy

transfer rate equation (9) to become more negative than the

positive values of term 1 in (9) and reduce the Joule heating rate
such that a negative electromagnetic energy flux results. The

offsetting terms in (9), the weak contribution from the Hall term,

and the always positive Joule heating rate preclude the existence

of a large, sustained upward Poynting flux under these modeled

conditions and quite possibly in nature, as demonstrated by the
DE 2 results.

5. Conclusions

We investigated the exchange of electromagnetic energy in the

high-latitude ionosphere using a steady state, source-sink concept

of Poynting's theorem to provide further insight into the M-I

electrodynamic system. Poynting's theorem applied to the high-
latitude M-I system and the theorem's relationship with the Joule

heating rate and mechanical energy transfer rate have been

elucidated and the consequences of this relationship evaluated

through numerical modeling. Because the Poynting flux approach

accounts for the neutral wind implicitly and describes the net

electromagnetic energy flux between the magnetosphere and

ionosphere, it represents a fundamental measure of energy transfer

in the system. The Joule heating rate is a significant part of the

energy exchange but requires accurate modeling of the neutral

wind. Evaluation of the contributing factors to the electromagnetic

energy flux has a strong dependence on the extent of the coupling

among the conductivity, neutral wind, and electric field
throughout the E and F regions.

Here we used the VSH model to provide the necessary

thermosphere-ionosphere parameters to evaluate and interpret the

electromagnetic energy flux at high latitudes for moderate to quiet

geomagnetic conditions during solar maximum. Although the

model is coupled to the magnetosphere through the mapping of the

magnetospheric electric field and particle precipitation, no direct

feedback to the magnetosphere has been attempted. To this end,

any neutral wind dynamo action in the model would be manifested

in terms of currents, with the magnetosphere acting as a pure

voltage generator. This study is representative of the situation

where the neutral winds have had sufficient time to respond to the

imposed electric field. In a "real world" situation this may not be

the case and the results of this study may change; however,

irrespective of how the conditions change, the importance of the

electric field-neutral wind coupling on the electromagnetics

cannot be ignored. In support of the model the simulated results

compare well with the measurements made by the DE 2 satellite.

The analysis of the steady state electromagnetic energy flux at

high latitudes under the model conditions of moderate to quiet

geomagnetic activity, December solstice, solar maximum has lead
to a number of conclusions.

1. The electromagnetic energy flux or field-aligned Poynting

flux is predominantly directed into the high-latitude ionosphere

with weak regions of upward electromagnetic energy flux near the

boundaries of the convection reversals. The distribution of

electromagnetic energy flux at high latitudes is asymmetric with

greater downward flux in the morning sector than in the evening

sector. The region of the polar cap has the lowest values of
downward electromagnetic energy flux.

2. The Joule heating rate accounts for much of the

electromagnetic energy converted in the ionosphere with the

conductivity-weighted neutral wind contributing significantly to
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Plate 4. Polar plots of (a) the height-integrated Joule heating rate with neutral winds and (b) height-integrated Joule

heating rate without neutral winds (same format as Plate 2).
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the Joule heating rate and thus affecting the net electromagnetic

energy flux between the magnetosphere and ionosphere.

3. On average, the mechanical energy transfer rate amounts to

about 10 to 30% of the net electromagnetic energy flux in the

dawn, dusk, and polar cap regions, acting as a sink of electro-

magnetic energy flux in the dawn and dusk sectors and as a source

of electromagnetic energy flux in the polar cap.

4. Weak upward electromagnetic energy flux is found in the

regions near the convection reversal boundaries due to the

mechanical energy transfer rate exceeding the Joule heating rate.

The upward electromagnetic energy flux was found to be small,

partly due to the relation of the conductivity-weighted neutral

wind to the imposed electric field and partly due to the Joule

heating rate increasing irrespective of the source of electro-

magnetic energy flux.

This analysis of the electromagnetic energy flux at high

latitudes has led to a better understanding of the significance of

Poynting flux measurements. Moreover, it tests the models in their

ability to properly address the extent of the coupling among the

conductivity, neutral wind, and electric field throughout the E and

F regions. It is apparent from the simulations used in this study

that the neutral wind is strongly coupled to the electric field well

into the E region. Observational evidence of the electrical

coupling with altitude needs to be gathered to validate the model's

electrical characteristics, particularly in the E region. An

outstanding question that needs observational support is to what

extent do the tidal forces from below and electric field forces from

above influence the electrical coupling in the E region.

Measurements in the central polar cap may be most effective in

addressing this issue, as the electric field, neutral wind, and

conductivity can be significant in this region, but yet the net

electromagnetic energy flux is small.
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Abstract. Using DE 2 data of ion drift velocities

and magnetic fields, we have calculated the field-aligned

Poynting flux (SIL) for 576 orbits over the satellite life-
time. This is the first application over an extended

data set of Poynting flux observations from in situ mea-
surements. The data has been sorted by interplane-

tary magnetic field conditions (northward or southward
IMF) and geomagnetic activity (Kp<3 and Kp >3) and
binned by invariant latitude and magnetic local time.

Our general results may be summarized as 1) the av-

eraged SII is everywhere directed into the ionosphere,
indicating that electric fields of magnetospheric origin

generally dominate, and 2) the distribution of Sll for
southward IMF can be well explained in terms of an av-

erage two cell convection pattern, while for northward
IMF a multiple cell convection pattern may be inferred.
We have addressed the interesting question of the distri-

bution of upward Poynting flux by binning only upward
observations and found that average upward Poynting

flux of less than 3 mW/m 2 may occur anywhere across

the high latitude ionosphere. We have also observed a

region at high latitudes in the predawn sector where the
average upward Poynting flux is of significant size and
occurrence frequency during southward IMF and high

Kp conditions.

Introduction

Several studies of large scale energy dissipation in

the high latitude ionosphere have been conducted in
the past. They have either involved radar observa-

tions [e.g., Vickrey et hi., 1982 and included references]
or satellite measurements [e.g., Heelis and Coley, 1988,

Foster et hi., 1983] of plasma densities and electric fields

together with models of the height-integrated conduc-
tivities to estimate the Joule heating rate as _pE 2 ,

where Ep is the height-integrated Pedersen conductiv-

ity and E is the electric field in the ionosphere. The use
of field-aligned Poynting flux (S u) derived from satellite

1Now at Applied Physics Laboratory, Laurel, Maryland.

Copyright 1995 by the American Geophysical Union.

Paper number 95GL00570
0094-8534/95/95GL-00570503.00

observations of electric fields and perturbation magnetic

fields as proposed by Kelley et al. [1991] has recently
been added as a method for determining the large scale

energy conversion, or transfer, rate E.J in the iono-

sphere.
There are two advantages to using SII over electric

field and energetic particle observations that are related
to the inclusion of neutral wind effects and an inde-

pendence from modeled conductivities. Computations
of the Joule heating rate cannot take into account the

height-integrated effects of the electric field, conductivi-
ties, and neutral wind motions [e.g., Banks, 1977, Heelis

and Coley, 1988] whereas the Poynting flux is directly

dependent on these parameters. Thayer and Vickrey
[1992] and Dang et hi. [1993] have recently used models
of thermospheric circulation to estimate the magnitude

of the electromagnetic energy generated by neutral wind

dynamo actions and have related this to possible obser-
vations of the Poynting flux.

Data Presentation

In a previous work [Gary et al., 1994], we have de-

scribed our technique for determining SII from DE 2
observations of the ion drift velocity (V) and perturba-

tion magnetic field (613). Of the several thousand orbits
during the satellite lifetime, only about 1300 passes over

the high latitude region are available which are suited
to our purposes. Determination of SII requires near con-
tinuous data between middle latitudes (h < 50 deg.) on

each side of a high latitude crossing in order to establish
a perturbation magnetic field baseline as described in

Gary et hi. [1994]. In addition to this requirement, we
have inspected each pass to ensure that the final calcu-

lation of SII is made using reliable data. Ultimately, 576
passes met our criteria for the production of reliable SII.
These orbits range over all DE 2 altitudes, from about
300 km to 1000 km, and represent passes from both

hemispheres. As described by Heelis and Coley [1988],

the 90 deg. inclination orbit of the DE 2 satellite causes
coverage of season to be linked to the local time cov-

erage with dawn-dusk passes occurring predominantly
in summer/winter and noon-midnight passes near the

equinoxes. It should also be mentioned that the lifetime
of DE 2 occurred during a period of very high solar ac-

tivity. Interpretations of our data need to be made with

these points in mind.
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Wehavebinnedthedata_ant latitude(A)
andmagneticlocaltime()lt_'_and sortedaccording
to Kp andIMF Bzconditionswhenpossible.Eachbin
covers5 deginA and1hourin MLT.Kp sortingsepa-
rateslowgeomagneticactivity(0<Kp<3)andhighac-
tivity (Kp >3), andIMFsortingseparatesnorthward
fromsouthwardIMF. Theresultsareshownin polar
dialsrepresentingthehighlatituderegionabove50deg
invariantlatitudeusingacolorcodedintensityscaleto
indicatethe magnitudeof SII. Binswhichcontaindi-
amondsrepresentregionswherewehavetessthan75
observations,whichwehavetakento bethelimit for
undersampling.Thechoiceof 75asalimit ensuresthat
at leasttwopassesareincluded,asonepassmaycon-
tributeasmanyas70observationsinasinglebin.Bins
whichhavenoshadingandnodiamondrepresentre-
gionsfor whichwehavenoobservations.IMF data
is availablefor only302of the576orbitsusedin this
study,thusreducingthestatisticsconsiderablywhen
weexaminethedistributionsunderdifferentIMF and
Kpconditions.In thisworkwewill continueto usethe
signconventionwheredownwarddirectedPoyntingflux
isnegative(Sll< 0) andindicateselectromagneticen-
ergybeingconvertedintoparticlekineticenergyin the
fluxtubebelowthesatellite,andupwardPoyntingflux
(Sl[> 0) indicatesthegenerationofelectromagneticen-
ergybelowthesatellite.

Observations for all IMF

Theresultsofour binning procedure for all IMF and

Kp conditions are presented in Figure 1. The averaged

Sii is everywhere downward with the largest values oc-
curring near dusk, dawn, and local noon. The highest

energy transfer rates are observed between 65 and 80
deg invariant latitude. These regions are generally colo-

cated with the auroral zone, indicating that on average
most of the Birkeland currents close locally in region
1/region 2 current sheet pairs. It is easily seen in Figure

1 that the total energy transferred into the ionosphere is
greater on the dayside of the dawn-dusk meridian than

on the nightside. For the variety of IMF and Kp condi-
tions which we have investigated, the dayside integrated
values exceed the nightside values by 20% to 50%.

Across the dayside between 70 and 85 deg there is

a region of relatively large SII. Part of this region can
be associated with cusp currents as well as with the
average convection patterns. A region of high average

electric field was observed in our results above 70 deg
between 0900 MLT and 1200 MLT. This overlaps a re-

gion of enhanced magnetic field perturbation producing

the "cusp" signature in Sll at the same location. There
is a bay of smaller valued Sit in the premidnight sector
which corresponds to relatively small values of E and

6B in the premidnight hours. The premidnight sector

showed consistently lower values of Sii throughout our
analysis, for all IMF and Kp conditions. Comparison

between some of the published studies on ion drifts [Kel-
ley, 1989, and included references] and neutral winds

[McCormac el al., 1991, Kelley, 1989] as well as model
results [e.g., Thayer and Killeen, 1993] indicate that the

general circulation of the ions and the neutrals is _t, _-
similar in this region. For low Kp, the same asymmei
tries about the noon-midnight and dawn-dusk meridi-

ans exist as for high Kp, but the magnitudes of both E

and 6B , and thus Stl , are smaller. The low Kp distribu-
tion of Sii is dominated by the region of elevated activity
near noon. The auroral zone is well defined across the

nightside in the Stl data as a narrow belt between 65
and 70 deg.

Observations for northward and

southward IMF

Figures 2(a) and 2(b) show the results of our sorting
the data by the sign oflMF B, and for high and low Kp,
with Figure 2(a) showing the case of southward IMF at

high Kp and Figure 2(b) the case of northward IMF at

low Kp. Many features of the distribution of S H can
be fairly easily reconciled with typical convection pat-

terns associated with northward and southward IMF,
and the values at high Kp can be generally described as

being larger than, and located at lower latitudes from,

those at low Kp. For southward IMF, the average SII ex-
hibits elevated values along the dusk and dawn convec-

tion boundaries, or auroral zones, reaching a maximum
of about 12 mW/m z as seen in Figure 2(a). Note also

a region of enhanced Sll extending to higher latitudes
between 1000 and 1200 MLT. This region, previously
identified with enhanced electric fields in the cusp, is
more easily identified when the orientation of the IMF

is included in the data selection. The largest bin av-

erage is between 1500-1600 MLT and 60-65 deg, and
is primarily composed of five southern hemisphere or-
bits that occurred during magnetic storms. Denget al.

[1993] described some of these orbits in their study of
the response of the neutral atmosphere to geomagnetic

storms. The bin averaged Stl is quite large above 60 deg
invariant latitude, peaking between 65 and 75 deg.

The interaction between the IMF and geomagnetic
field for northward IMF leads to much weaker driv-

ing of the ions from magnetospheric electric fields, and
the northward IMF results in Figure 2(b) show little
variation below 70 deg. The largest values are about

7.3mW/m 2 and occur across the dayside in the regions
v,here typical multiple-cell (> 2) convection patterns

might exist and the general motion of the ions would

oppose that of the neutrals. The regions of SII above
the background near dawn and dusk are also consistent

with a multiple-cell convection pattern.

Observations of upward Poynting flux

Several authors have addressed the ability of neutral
wind motion to generate electromagnetic energy in the
lower ionosphere. This energy would be transported

along magnetic field lines into the magnetosphere. As
discussed in e.g., Kelley et al. [1991], this would result

in observations of upward Sii . In their work on assess-
ing the role of the neutral wind dynamo in high latitude

energy generation, Thayer and Vickreg [1992] predicted
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Figure 1. Polar dial showing the distribution of the

average field-aligned Poynting flux (SII) in magnetic lo-

cal time (MLT) and invariant latitude (A) above A=50 °.
The bins used in the averaging cover 1 hour in MLT and

5 degrees in A. The data are for all IMF orientations

and Kp values, averaged over 570 DE 2 high latitude

passes.

regions near convection reversals to be likely locations

for upward Poynting flux observations. We have in-
deed observed individual cases where this may be the

case. The variablity in location of the convection re-

versal leads these cases to be statistically unobservable.

We have not observed any locations in the high-latitude

ionosphere which exhibited upward Poynting flux over

a relatively long term average. However, we have taken

all observations of upward SII and performed the same

binning and sorting of the data as was applied to the

overall observations in order to report on the distribu-

tion and occurrence of upward Poynting flux. Some of

these results are presented in Figure 3. Perhaps the

most obvious point to be made from the figure is that

the average magnitude of upward Poynting flux is quite

small under all conditions, with no single bin greater

than 2.25 mW/m 2 • Such small average values are in

line with the modelling of Thayer and Vickrey [1992]

and Dang et al. [1993]. All of our observations above the

nominal uncertainty level of 0.5 mW/m 2 occur above 65

deg. invariant latitude.

Figure 3 depicts the distribution of upward Sll for all

IMF and high Kp. The largest bin averages occur on

the dawnside of the noon-midnight meridian, and are

almost entirely composed of southward IMF observa-

tions. On the duskside, the occurrences are of smaller

magnitude and seem to be sporadically located. There

are no significant observations above 85 deg, few below

65 deg, and observations of upward SII near noon are no-

ticeably absent. For low Kp, observations of substantial

(> lmW/m 2 ) upward S[I averages all but vanish. The

early morning hours which show the largest upward Sll

at high Kp exhibit insignificant average values at low

Kp.

It is apparent that, while observations of upward Sii

occur over most of the high latitude ionosphere, they are

not widely significant in an average sense. Bin averages

greater than 0.5 mW/m 2 are rare, and it is possible that

most could vanish if a substantially larger data set was
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Figure 2. Results of sorting the bin averaged Stl data

by southward and northward IMF for high and low Kp,

in the same format as Figure 1 but with a different scale.
Bins with no data are not colored. Bins with fewer than

75 measurements are shown with a diamond. (a) results

for southward IMF and Kp>3, representing data from

92 high latitude passes. (b) results for northward IMF

and Kp<3, representing data from 117 passes.
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Figure 3. Results of the bin averaged upward Poynting

flux in the same format as Figure 1. Only measurements

of SI[ >0 have been included in the averages for all IMF

and Kp>3, representing data from 147 passes.
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employed.A likelyexceptionwouldbetheregionbe-
tween70-80degnear0300MLT.Wehaveexaminedthe
frequencyofoccurrenceof upwardSHgreaterthan0.5
mW/m2, andin thisregionit exceeds20%forsouth-
wardIMF.Theoccurrencefrequencyisdeterminedby
takingtheratioofthenumberofobservationsforwhich
SII> 0.5mW/m2to thetotalnumberof observations
ineachbin. Detailedexaminationof thebinnedorbits
in thisregiondoesnot suggest that the upward Poynt-

ing flux observations are suspect. Few regions show

an occurrence frequency greater than 10%, but even

this frequency is somewhat remarkable. Examination of

separate orbits reveals that the regions of appreciable

upward Poynting flux are associated with field-aligned

currents in the polar cap which are distinctly smaller in

scale size than the large scale region 1 and region 2 cur-

rent distributions. Such field-aligned currents are likely

to arise from divergences in the horizontal ionospheric

currents which should exist whenever the thermospheric

winds become the dominant driver of electromagnetic

energy.

The interpretation of upward Poynting flux observa-

tions as being largely due to neutral wind dynamo ac-

tion is certainly not unambiguous. However, the neutral

gas obtains its highest velocities during southward IMF

and high Kp conditions in just this region. If the field

lines connecting the predawn ionosphere to the magne-

tosphere are open during these observations, then they

must extend far into regions where the magnetosheath

plasma is super-Alfvenic. Communication between the

magnetospheric driver and the ionosphere would be ef-

fectively severed. This argues for a weak connection

along open field lines between the magnetospheric elec-

tric field driver and the ionospheric load.

Conclusion

Our work in determining the distribution of the en-

ergy transfer rate in the high latitude ionosphere using

observations of the field-aligned Poynting flux Sjj has

produced the following results:

1) SII is downward everywhere on average;

2) for southward IMF, a two-cell convection pattern is

evidenced with the greatest Sll occurring in the auroral

zones at dawn and dusk, with an "offset" cusp region

at higher latitudes just before noon;

3) for northward IMF, a multiple-cell convection pat-

tern is evidenced with the greatest SII occurring near

noon where we might expect the ion and neutral 'gas

bulk flows to have opposite directions;

4) upward Poynting flux may be observed at all loca-

tions but at generally small values, averaging to less

than 1 mW/m _ , and never with sufficient frequency to

dominate a long term average;

5) there is a region of significant upward Poynting flux

generated in the predawn polar cap with an average of

greater than 2 mW/m 2 , although the net SII is down-

ward when all observations are averaged. Observations

of upward SII account for more than 20% of the total

observations for southward IMF with Kp>3 in this re-

gion;
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ABSTRACT

Height-resolved and height-integrated estimates of the Joule heating rate in the high-latitude

E region that include the effects of the neutral wind have been derived from measurements made

by the Sondrestrom incoherent-scatter radar. Analyzed in detail are two Sondrestrom radar data

sets from World-Day experiments that represent solar minimum, daytime conditions with periods

of geomagnetic activity. These measurements show much more structure in the height-resolved

Joule heating rate when neutral winds are included in the analysis. The neutral wind impact on

the height-resolved Joule heating rate was present during all periods of elevated Joule heating

and displayed an altitude-dependent influence that led to both positive and negative contributions

within the E region. Most often, the wind impact was to create a much narrower region of Joule

heating. The influence of the neutral wind on the height-integrated Joule heating rate from 90 to

140 km was significant, at times, with observed reductions of 40% and observed enhancements

of as much as 400%. However, the height-integrated Joule heating rate often did not reflect the

degree of neutral wind influence on the local Joule heating rate because the altitude-dependent

behavior of the wind would tend to cancel out during the height-integration process. Evidence of

electric field behavior controlling the neutral wind influence on the Joule heating rate was also

observed. During directional changes in the electric field, the neutral winds tended to enhance

the Joule heating rate while directionally steady electric fields resulted in an overall reduction of

the Joule heating rate by the neutral wind.
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1. INTRODUCTION

Much work has been done on quantifying the dissipation rate of electromagnetic energy in

the ionosphere-thermosphere system through estimates of the Joule heating rate by spacecraft

and ground-based measurements [i.e., Foster et al., 1983; Rich et al., 1987, 1991; Heelis and

Coley, 1988; de la Beaujardi6re et al., 1991; Baumjohann and Kamide, 1984]. These

contributions have largely been in the form of height-integrated Joule heating rates that quantify

the dissipation rate of electromagnetic energy exchanged between the ionosphere and

magnetosphere. Various assumptions are used in each technique, however, a common

assumption is to neglect the neutral winds and to presume that the height distribution of the Joule

heating rate is described solely by the Pedersen conductivity. This assumption is invoked not

because the neutral winds are considered negligible but because of the large uncertainty in

describing the altitude distribution of the neutral wind through the E and F region. Modeling

efforts using the NCAR Thermosphere-Ionosphere General Circulation Model (NCAR-TIGCM)

have demonstrated that the neutral winds are, at times, significant contributors to the height-

integrated Joule heating rate [e.g., Thayer et al., 1995; Lu et al., 1995]. However, high-latitude E-

region neutral dynamics are still poorly understood and difficult to represent adequately in a

model due to uncertainties in representing tidal forcing from below and magnetospheric forcing

from above. Thus, the altitude distribution of the electromagnetic energy dissipation rate in the

ionosphere and the role of the neutral winds still remain as fundamental questions. The difficulty

in addressing such issues has been due to the difficulty in making measurements of the vertical

distribution of the electrodynamic parameters, such as currents, electric fields, conductivities,

and neutral winds, needed to estimate completely the Joule heating rate. The added difficulty is

the various interdependencies amongst these parameters, thus requiring near simultaneous,

height-resolved observations of these parameters for proper assessment of the Joule heating rate.

Incoherent-scatter radar measurements provide the most comprehensive measurement set

for estimating the local current, electric field, conductivity, and neutral wind within the E region

for extended periods. These local, high-resolution measurements of E-region electrodynamic

parameters allow for the distribution of electromagnetic energy dissipation within the E region to

be elucidated. This was first demonstrated by Brekke and Rino [1978] where they determined the

E region currents and conductivities from incoherent-scatter radar measurements at Chatanika,

Alaska, using a multipulse scheme that provided sufficient (-10 km) resolution of the E region,

and evaluated empirically the local and height-integrated Joule heating rate under active

conditions. However, the poor signal statistics associated with this mode limited the observations

to times of only very active conditions. A more typical approach using the radar has been to

determine the electric field and Pedersen conductivity throughout the E and F region using long

pulse schemes and either considering local effects by the neutral wind [de la Beaujardi6re et al.,

1991], setting the neutral wind to zero [Banks, 1977], or using a reference wind model [Vickrey

et al., 1982]. Although this more typical approach has the advantage of operating under less

active conditions, the poor E-region resolution, lack of adequate representation of the neutral
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wind, andpulsesmearingeffectslimit theefficacyof suchanapproachfor studiesconcerned
with thealtitudedistributionof theJouleheatingrate.

Sincetheearlierwork, improvementsto incoherent-scatterradars--for example,newor
improvedpulseschemes---haveenhancedstudiesof E-regionelectrodynamics.Recently,Brekke
et al. [ 1990]describedimprovementsto EISCATmeasurementsandtheability to determine
ionosphericcurrentsat hightemporalandspatialresolutionusingamultipulsescheme.Kamide
andBrekke [1993]presentedadditionalEISCATresultson theheightdistributionof E-region
currentswithin theauroralelectrojets.EISCAThasfurther improvedtheirE-regioncapabilities
by employinganalternatingcodeschemethatprovidesrangeresolutionsimilar to their
multipulseschemebut with improvedsignalstatistics.Similarhigh-resolutionoperatingmodes
havebeenimplementedat theSondrestrom,Greenland,incoherent-scatterradarwith the
alternatingcodealgorithm[Lehtinen,1986;LehtinenandHaggstrom,1987]enablingimproved
measurementsof E-regionparametersatanaltituderesolutionof 3 km.

Theimprovedcapabilityof theSondrestromradarallowsfor adetailedanalysisof E-region
electrodynamics.Morespecifically,it permitsthedirectassessmentof theheight-resolvedand
height-integratedJouleheatingratein thehigh-latitudeE regionthatincludesneutralwind
effects.As aresult,thispaperpresentsthefirst height-resolvedestimatesof theE-regionJoule
heatingrateoverSondrestromat suchhighresolutionandevaluatesthecontributionof the
neutralwind to the localaswell astheheight-integratedJouleheatingrates.Two 24-hour
MLTCS (MesosphereLowerThermosphereCouplingStudy)World-Dayradarexperiments
(August5, 1993andMay 2, 1995)thatcorrespondto solarminimum,daytimeperiodsof
moderateto activegeomagneticconditionsareusedin theanalysisto evaluatetheJouleheating
rates.Theapproachtakenis presentedin thefollowing sectionwheretheJouleheatingrate
expressionsareprovidedandtheneutralwind influenceis clarified.This is followed by asection
thatdescribesthedataanalysisof theradarmeasurementsandpresentsdetailedanalysisof the
electrodynamicparametersderivablefrom theradar.A discussionsectionexaminestheJoule
heatingratefor thetwo radarexperimentsin detailandassessestheroleof theneutralwinds.
Theconclusionsectionsummarizesthefindingsfrom thisstudywhich,in part, indicatemuch
morestructurein theheight-resolvedJouleheatingratewhenneutralwindsareincludedin the
analysis.
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2. APPROACH

Many investigations of the Joule heating rate have used the expression

p

qj = j±oE± = trpEL 2 = trp(E± + u,,xB) 2 (1)

and have required the need to make some approximations to the calculation. This is due to the

fact that to evaluate accurately the Joule heating rate by (1) requires knowledge of the electric

field and the distribution of the neutral wind and conductivity with height (requiring collision

frequency and gyrofrequency calculations based on plasma and neutral composition). Quite often

the neutral wind in (1) is assumed to be zero resulting in the approximate expressions for the

local and height-integrated Joule heating rate given, respectively, as

q_ = treE 2 • (27 = fz'_'tr(z)eE2 dz = _.eE 2 (2)
' J90

Another approach to estimating the Joule heating rate that was discussed, for example, by

Cole [1962, 1975] is the expression

qj = j± • E_ -- --J2 ," QJ = [z,,,,,., j(z) 2 dz , (3)
(rc Jgo t:r(z)c

where _c is the Cowling conductivity given by

2

O"c = O'p + O'..__H_
O'e

(4)

with op and t_H being the symbols for the local Pedersen and Hall conductivity, respectively.

The presence of the Cowling conductivity in (3) is solely due to the fact that the magnitude of the

horizontal current, IJ l, can be written as

2 _1/2, t '

= (,,2,+o,,)ie;E

IJ.I= o,, o-,,+ G-)j lull
112 tIJ l- lEd (5)

Solving for E_ and substituting into (1) gives the Joule heating rate expressed by (3).

Because this expression involves the difficult measurement of the local current density and

the Pedersen and Hall conductivity in the E region, many investigations have not used this

approach. However, using (3) has the advantage that the effects of the neutral wind on the Joule

heating rate are inherently contained within the current density measurement and do not have to

be determined explicitly. The approach taken is to use the Sondrestrom radar measurements to

evaluate the height-resolved and height-integrated Joule heating rates using (2) and (3), and





compare their relative differences to elucidate the neutral wind impact. Additional analysis of the

neutral wind behavior related to the observed differences in the two Joule heating rates will be

camed out by directly deriving the neutral wind from the radar measurements.

Although the local difference between the Joule heating rates estimated by (2) and (3) can

show the impact of the neutral wind, the neutral wind magnitude and direction cannot be

uniquely determined from these two estimates alone. Yet, there are conditions when the observed

differences between the two calculations constrain the possible combinations of wind magnitude

and direction. It is, therefore, useful for further interpretation to express what the difference

between the two approaches represents and how well the neutral wind can be quantified based

only on measurements of qjE and qj.

For the local Joule heating rate, the difference between qj and qjE can be expressed as

Aq(z) = j±(z). E'_(z) - _p(Z)E_ = o'p(z)[(u_(z)xB) 2 - 2u.(z).(E× B)] (6)

This expression can be further simplified by using direction cosines such that

Aq(z) = o',(z)lBl[ u,(z)2[B1 - 21Elu.(z)cos(O)] , (7)

where the symbol I I represents the magnitude of the vector and the lun(z)lcos(0) term represents

the component of the neutral wind in the ExB direction• From (6) it can be recognized that by

simply having a non zero neutral wind, irrespective of direction, the local Joule heating rate will

be enhanced. This would lead to a positive difference between qj and qjE. From (6) the only way

the net impact of the neutral wind can reduce the Joule heating rate is if there is a component of

the neutral wind in the E×B direction. To express this analytically, (7) can be written in the form

of a quadratic equation and solved for the magnitude of the neutral wind using the full range of

possible angles for the wind direction with respect to the E×B direction• The quadratic

expression from (7) becomes

Aq(z) _ 0 (8)
• lu.cz 121 - 2lElu,,(z)lcos(O) o. (z)IB1

and its solution may be written as

EI cos2(0) + Aq(z)ap(z)lu. z l- I cos 0) +
- Inl

Only positive, real roots are appropriate when describing the behavior of the neutral wind

magnitude. It can be shown that a small positive discriminant in (9) leads to the smallest range of

possible angles centered on the ExB direction and the smallest range in neutral wind magnitude.

Thus, when Aq(z)/6p(z) is negative and close but less than IEI2, the problem is constrained and

the magnitude of the neutral wind and its angle are more isolated. However, when Aq(z) is
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positivetheresultis non-uniqueasall anglesanda rangeof magnitudesmayprovidethecorrect
answer.Thisbehaviorwill beillustratedin theresultssection.

Radar Estimates of Electrodynamic Parameters

In general, it is difficult to measure all of the required electrodynamic parameters

simultaneously to study adequately E-region electrodynamics. Considerable progress has been

made over the years toward improving the measurement of these quantities with the Sondrestrom

radar. The recent implementation of the alternating code scheme (with 3 km range resolution) in

combination with simultaneous long pulse measurements (with 48 km range resolution) at

Sondrestrom provides a radar data set suitable for electrodynamic studies of the E and F region.

This combination of waveforms is the transmitter mode used throughout the experiments

presented in this study.

To apply the expressions described above to incoherent-scatter radar measurements it is best

to reduce the equations in terms of the most basic parameters derived directly from the radar.

This simplifies the error propagation and, although some equations may not be intuitive, they

illustrate directly the variables that are measured versus those that are modeled or approximated.

For example, the local current density may be written (assuming charge neutrality and equal ion

species velocities) as

j = ene(v i - ve) ,

where e is the electronic charge, ne

(10)

is the electron density, vi, is the E-region ion drift velocity,

and Ve is the electron drift velocity (assumed equal to the F-region ion drift). All these quantities

are directly derivable from the radar measurement. Using the coordinate system with the x-

direction positive magnetic east, the y-direction positive north, and the z-direction positive

upward along the magnetic field, the east and north components of the current density may be

written as

jx(Z) = enelvx(z) +-_l

jy(Z) = ene( Vy(Z)___ ) . (11)

Using propagation of errors and ignoring correlation terms, the relative uncertainty of the current

density is given by

0.j _ 0 .2 O'_ 0._,
--_ _, + i + (12)
j (Av) 2 (Av) 2

with _ representing the standard deviation and Av corresponding to the drift velocity difference

between the E-region and F-region ion drifts for a particular E region altitude. Thus, the error in

the current estimation grows as the differential velocity between the E and F region drifts gets
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small.This limits the ability to determinethecurrentdensityaccuratelyabovetheE regionusing
this approach.

For the localJouleheatingrate,(3) becomes

j2B_-2i - ent,(vi - vt,)2 B_-_i (13)
j.E" = qj = ....

ell t, Vin Vin

where B is the Earth's magnetic field (assumed constant with height), ,(2/is the ion

gyrofrequency, and vm is the modeled ion-neutral collision frequency. The ion-neutral collision

frequency depends on the collision terms for NO +, 02 +, O + in a neutral atmosphere determined

by MSIS-90 of N2, 02, O (see Schunk and Nagy [1980]). The total ion-neutral collision

frequency is determined by the sum of the collision frequencies after weighting each collision

frequency by the ratio of the specific ion density to the total ion density. The number densities of

the different ionic species are obtained using an empirical model of [O ÷] / ne [Kelly and

Wickwar, 1981] and an assumed molecular composition of 75% NO + and 25% 02 +. The relative

error for the local Joule heating rate is given as

[ °-2 0"2 40-2 (14,
0"q_....L= _n_n" + v,.....__,+ 7-qj Vin2

Here, the error in the Joule heating rate is most sensitive to errors in the current density and,

therefore, calculations of the Joule heating rate using this approach are also limited to E-region

altitudes.

Deriving the Joule heating rate from radar data using (3) has the advantage that the explicit

calculation of the neutral wind is not required. However, as was shown by (9), the actual

behavior of the wind cannot be determined uniquely from the difference between the two Joule

heating approaches. Therefore, the neutral wind is derived directly from the radar measurement

for interpretation of the observed behavior in the Joule heating rates.

Rino et al. [1977] describe the approach used to derive the neutral wind from the radar

measurements. The height-dependent neutral wind velocity is deduced from the steady-state ion

equation of motion applied to E-region altitudes and takes the form

ux(z) = v (z) - a,(ex_
Vin\ B

)uy(z) : v (z) - + v (z) •
(15)

In general, the limiting factor in deriving the neutral wind and using it in (1) has been the

dependency of the neutral wind on the collision frequency model, as shown by Rino et al. [1977]

and Johnson [1990], along with limitations in certain radar pulse schemes. The decreasing

collision frequency with height amplifies any error in the measured value of the electric field





and/ordrift velocity atupperE-regionaltitudes.However,asshownby Johnson[1990], thereare
configurationswherethecollision frequencyhaslittle impacton thederivedwind. In addition,
thealternatingcodewaveformusedin this studyhasimprovedsignalstatisticsovermultipulse
schemesprovidingmoreaccurateestimatesof theion drift velocity in theupperE region.Shown
in thenextsectionwill bethattheneutralwindestimatesusing(15)cangive,attimes,reliable
estimatesup to altitudesof 140km with somesensitivityto collisionfrequency.Thecalculation
of theJouleheatingrateusing(13) andthePedersenconductivityusedin (2) arealsosensitiveto
themodelcollisionfrequency.An assessmentof thesedependencieswill bediscussedin a later
section.
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3. RESULTS

Presented are all of the electrodynamic properties derivable from the radar measurements

needed in the evaluation of the E-region Joule heating rate for one particular period of

observations, August 5, 1993, between 08:00 and 22:00 UT. Subsequent analysis of other data

will include only the plots needed to evaluate adequately the derived Joule heating rate with the

understanding that the same process used in analyzing the August 5, 1993 observations was

applied to these data. The analysis begins by illustrating as the ion drift velocity, electron

density, and derived electric field for this day. Then the current density and conductivity

properties of the E region are analyzed, which will lead into estimating the Joule heating rate.

On August 5, 1993, the Sondrestrom radar performed a three-position radar experiment (one

position directed parallel to the magnetic field at 141 ° azimuth, 80 ° elevation, and the others

120 ° apart at 70 ° elevation) that employed the alternating code scheme on one frequency and a

long pulse scheme on the other frequency. Each position was integrated for 5 minutes and for

two range gates, giving a range resolution of 6 km in the E region. The line-of-sight ion

velocities throughout the E and F region are determined from these measurements and resolved

at each gate into a geomagnetic coordinate system with the x-direction positive magnetic east,

the y-direction positive north, and the z-direction positive upward along the magnetic field. The

technique of combining the three-position data is discussed by Johnson [ 1990]. A general

assumption in forming the resolved velocity is that the velocity vector does not vary significantly

over the spatial region described by the three-position measurement. Also, it is not assumed that

each line-of-sight remains fixed for the interval required to make a three-position measurement,

but rather, the line-of-sight quantities are allowed to vary linearly in time.

The resolved electric field and the E-region ion drift velocities resulting from these three-

position measurements and the mean E-region electron density are shown in Figures 1 and 2. The

observations are representative of dayside auroral oval measurements covering the magnetic

local time period from 05:49 to 19:49 with the solar zenith angle ranging from 82.8 ° to 77.5 ° ,

respectively, with a minimum solar zenith angle of 50.1 °. The electric field is presented in Figure

1 in components of direction and magnitude, which will be useful when discussing the estimates

for the Joule heating rate. The one-sigma error in the electric field is no greater than + 2mV/m

throughout the experiment. The electric field direction shows a typical two-cell ion convection

with nearly equal behavior of the electric field magnitude on either side of the noon meridian.

This electric field results in eastward ion drifts in the morning sector, northward ion drifts

(antisunward) in the noontime sector, and northwestward ion drifts in the evening sector, as

illustrated in Figure 2 by the ion drifts in the upper E region drifting essentially in the ExB

direction. The E-region ion velocities in Figure 2 rotate clockwise in the direction of the electric

field with decreasing height from the F region to the lower E region as the ratio of the ion

gyrofrequency to the ion-neutral collision frequency decreases. The electron densities in Figure 2

are relatively uniform throughout the E region. Note that the electron densities are temperature
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correctedabove120km,while belowthis altitudeit is assumedthat the ion andelectron

temperaturesareequal.

TheE-regioncurrentdensityfor thisdatasetis shownin Figure3. Thecurrentdensitywas
determinedby (11)usingtheelectricfield datapresentedin Figure 1andtheelectrondensityand
ion drift datapresentedin Figure2. Asdiscussedfor exampleby Brekkeet al. [1990], theE-
regioncurrentdensitywill berotated90° clockwisefrom theion drift velocity atanyheightas
longastheneutralwind andelectricfield parallel to themagneticfield canbe ignoredandonly
oneion speciesis present.By comparisonwith the ion drifts in Figure2, onecanseethatthe
currentdensitydirectionin Figure3,in general,followsthis rule.However,thereareregions
wherethecurrentdensityisnot 90° to the ion drift; thesesignificantdeparturesareassociatedto
neutralwind effects.This will bemoreclearlydemonstratedin theanalysisof theJouleheating
rate.

Case I - Joule Heating Rates for August 5, 1993

Presented in Figure 4 is a comparison between height-resolved Joule heating rates derived

from the radar data for August 5, 1993, using (2) and (13) and their height-integrated quantities

integrated over E-region altitudes from 90 to 140 km. The difference plot relates to (6) given in

section 2 and, therefore, provides an indication of the neutral wind influence on the Joule heating

rate.

Height-Integrated Data

Discussed first is the height-integrated Joule heating rates presented in Figure 4a where the

height-integrated Joule heating rate (QjE) excluding neutral winds, depicted by the solid black

line, is compared with the height-integrated Joule heating rate (Qj) including neutral winds,

depicted by the solid orange line. An error check is made on the height-integrated Joule heating

rates (Qj) with values having a percent error exceeding 50% forced to zero. Found here are two

active periods during the experiment occurring near 10:00 UT and 18:00 UT. At and after

10:00 UT, relatively good agreement between the two approaches is seen indicating that overall

the neutral wind effect on the height-integrated Joule heating rate is of minor significance during

this time. However, prior to 10:00 UT, Qj exceeds QjE indicating a neutral wind enhancement to

the height-integrated Joule heating rate. This contribution occurs during times of changing

electric field direction (see Figure 1a) while after 10:00 UT the electric field direction is steadier.

Later, between 13:00 UT and 15:00 UT, the neutral winds contribute again to enhance the Joule

heating rate during a time when the electric field direction is transitioning from primarily

southward to northward.

The active period near 18:00 UT results in the largest discrepancy between height-

integrated quantities, with the neutral winds acting to reduce the height-integrated Joule heating

rate by over 40% near peak activity in the electric field magnitude. The impact of the neutral

wind to reduce the Joule heating rate is dependent on the time history of the neutral wind forcing.
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Referringto Figure la, thetimeperiodnear18:00UT showstheelectricfield magnitude
increasedbut thedirectionof theelectricfield remainedconstantsince15:00UT. This would

indicatethat theneutralwinds in theF regionandtopsideE regionhavebeenforcedby ion drag
overat leastathree-hourperiodto flow in thedirectionof the ion drift andeffectivelyreducethe
Jouleheatingratewhentheelectricfield magnitudeincreased.

Height-Resolved Data

The height profiles used to determine the height-integrated Joule heating rates are provided

in Figure 4b. Gaps in the data represent times of poor signal statistics. In this figure, the height-

resolved Joule heating rates (qjE), using (2), are presented in the bottom panel and the height-

resolved Joule heating rates (qj), using (13), are presented in the top panel. The middle panel

represents the difference between the top and bottom panels to highlight the comparison and

illustrate the local effect of the neutral wind. A negative difference (blueward) means the wind is

reducing the local Joule heating rate while a positive difference (redward) means the wind is

enhancing the local Joule heating rate. The dark yellow to light green transition in the color bar

marks the transition between positive and negative differences.

The shape of the profiles shown in the bottom panel reflect the vertical distribution of the

Pedersen conductivity as the electric field is assumed to map without attenuation through the E

region. This shape is modified in the top panel by the effects of neutral winds contained within

the current density measurement as the conductivity-weighted neutral wind contributes to the

local Joule heating rate in an altitude-dependent manner. Prior to 10:00 UT, the middle panel

shows mostly positive differences in the upper E region indicating local wind enhancements of

the Joule heating rate. This upper E-region contribution is the reason for the enhancement in the

height-integrated Joule heating rate shown in Figure 4a during this time. After 10:00 UT, weakly

negative contributions in the lower E region and weakly positive contributions in the upper E

region result in little influence of the neutral wind on the height-integrated Joule heating rate.

Although this was recognized in the height-integrated data, it is shown by the height-resolved

measurement that it is a cancellation of wind during the height-integration process that makes it

insignificant, not the fact that the wind is simply negligible in the E region.

Near 18:00 UT, the middle panel of Figure 4b shows a strong negative difference in the

upper E region becoming moderately positive in the lower E region near 117 km. This would

indicate that the wind is rotating in altitude as is typically the case in the E region. The negative

difference on the topside indicates the neutral winds are moving in an ExB direction, or,

equivalently in the direction of the F-region ion drift. This neutral flow has the effect of

significantly reducing the local Joule heating rate in the upper E region. As the altitude decreases

the neutral winds begin to rotate and enhance the Joule heating rate in the lower E region. This

enhancement can be seen in the middle panel by the positive difference depicted in red and by

the more localized Joule heating rate in the top panel peaking at 117 km with a half-width of

only about 12 km. The localization of the Joule heating rate in altitude is an important effect
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causedby neutralwinds, which is notrecognizedin theheight-integratedquantity.In fact, the
height-integratedestimatesby themselvescouldbemistakenlyinterpretedasanoverallreduction
in JouleheatingthroughoutthecolumnwheninsteadtheJouleheatingis simply beingenhanced
in amorelocalaltituderegimeby theneutralwind. Moreover,theupperE-regionwindsare
reducingthelocalJouleheatingrateby morethan75%duringthis timewhile the lower-Eregion
windsareenhancingtheJouleheatingratebynearly50%at thepeak.Therefore,theneutral
windsareplayinga largerrole locally thanindicatedby theoverall 40%reductionobservedin
theheight-integratedJouleheatingrate.This is thefirst indicationof suchaneventandthe
impactof suchalocalizedheatsourceon theionosphere-thermosphereneedsfurtherevaluation.

Fromestimatesof qj andqjE,thegeneraldirectionof theneutralwind requiredto produce
theobservedchangesin theE-regionJouleheatingrateduringthepenetrationeventnear
18:00UT havebeencrudely identified.Thisbehaviorwasdescribedanalytically in section2
by (8); shownin Figure5 is thesolutionto (8)usingheight-resolvedradardatatakenat
17:43UT (nearthetime of maximumreductionin theheight-integratedJouleheatingrate).The
plot representsthepositiverealrootsof theneutralwind magnitudefor all anglesthatmay
satisfythe localdifferencebetweenqj andqjEweightedby thePedersenconductivityateach
altitudein theE region.Thecolorcodeidentifiesthealtitudeof eachcurveandthezeroangle
representstheExB directionat this timewith increasinganglesrepresentingcounterclockwise
rotation.Forthisparticularprofile, thepositiverootsat 145.6km aremostconstrainedin angle
with arangeof only +20 °. Thus, although the magnitudes cover a broad range of possibilities,

the direction of the neutral wind can be relatively well identified. The next three altitudes (coded

orange, yellow, and light green) result in the same roots with their curves nearly identical and

difficult to distinguish on the plot. Again, the required direction of the neutral wind is well

constrained to within a range of angles of +30 °. As Aq(z), scaled by the Pedersen conductivity,

becomes less negative with decreasing height, a broader range of angles and magnitudes become

possible solutions and, by 117 km and below, all angles and a large range of wind magnitudes

are conceivable. These analytical solutions follow the general discussion provided above and

illustrate the range of values possible depending on whether Aq(z) is positive or negative.

Also plotted in Figure 5 is the estimate of the neutral wind magnitude and angle with

respect to the ExB direction, depicted by the star symbol, derived using the steady-state ion

momentum equation approach and solving for the neutral wind using (15). At all altitudes, the

derived wind magnitude and angle from this approach fall very close to the specific roots needed

to reduce Aq(z) to zero. This would indicate that, for the collision frequency model used, the

neutral wind estimate is representative of the actual wind behavior throughout the E region. An

insert of the neutral wind distribution with height in Figure 5 shows more clearly the behavior of

the neutral wind with altitude. Here, the wind components are displayed with positive

magnitudes corresponding to eastward and northward. As indicated in both graphs of Figure 5,

the wind is rotating in a counterclockwise direction with decreasing altitude, starting in the ExB

direction of the northwest in the upper E region and ending in the southward direction in the
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lowerE region.Themagnitudeof thewindsignificantlydecreaseswith decreasingaltitudeasthe
wind speedis near1200m/secat 145.6km, reducesto near400m/secby 123.0km, and
eventuallydropsbelow50m/secat andbelow 106m/sec.

CASE II - Joule Heating Rates for May 2, 1995

The same analysis in case I was performed on radar data taken on May 2, 1995. The mode

was identical to the August 5, 1993 data set and the electric field direction and magnitude for this

day are presented in Figure 6. The electric field behavior throughout this day is quite variable

and, prior to 4:00 UT on this day (not shown), the electric field was strongly northeastward for

three hours and, at times, exceeded 100 mV/m. This complex behavior in the electric field is

reflected in the variability of the Joule heating rate presented in Figure 7. The analysis for the

Joule heating rate is the same as above and the comparison between the two forms for the height-

integrated and height-resolved quantities are presented in Figure 7a and b, respectively. The

panels in Figure 7 are of the same format as those presented in Figure 4. The break in the height-

integrated data in Figure 7a between 6:00 and 7:00 UT and the lack of variability in the height-

resolved _imates in Figure 7b during these times is due to a significant drop in the electron

density resulting in little Joule heating and poor signal statistics. This corresponds to a time when

the relative error in the height-integrated Joule heating (Qj) exceeded 50% and the height-

integrated and height-resolved values are forced to zero.

Height-Integrated Data

The height-integrated quantities for this day in Figure 7a show variable Joule heating

occurring between 4:00 and 10:00 UT followed by an extended period of enhanced Joule heating

between 11:00 and 16:00 UT. During the period between 4:00 and 10:00 UT, the estimate of the

height-integrated Joule heating rate, Qj, often exceeds the estimate, QjE, indicating that the

overall impact of the neutral winds are to enhance the height-integrated Joule heating rate.

Within this time frame, the electric field magnitude peaks a number of times and then gradually

reduces, as shown in Figure 6. However, prior to this time period the electric field direction

changed from northeastward to a southwestward direction with lesser but significant directional

changes throughout the period. This supports the observation made in the previous data set that

during directional changes in the electric field the neutral wind often contributes to enhance the

height-integrated Joule heating rate.

After 11:00 UT to about 14:30 UT the height-integrated Joule heating rate intensified.

During this time the direction of the electric field remained consistently southward while the

electric field magnitude increased. Also during this time, both estimates of the Joule heating rate

increased, with the Qj estimate typically less than the QjE estimate. A similar result was found in

the previous case under a strong but directionally stable electric field. The Joule heating rate

calculations following 14:30 UT are of particular interest as the magnitude of the electric field,

shown in Figure 6, drops by a factor of three and the direction switches nearly 180 ° to mainly a

northward electric field. The 180 ° transition in electric field direction takes about half an hour
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(14:30to 15:00UT) to complete.Accompanyingthis transitionperiod,theestimateof QjEdrops
significantlyin accordwith thereducedelectricfield magnitude,while theQj estimateis
enhanced.TheQj estimatereturnsquickly to the reduced QjE estimate after 15:00 UT--that is,

once the electric field has completed its transition from southward to northward. This period is

studied in more detail in the discussion section. Near 16:00 UT another moderate enhancement

in the northward-directed electric field is found resulting in an enhancement in the Joule heating

rate with the QjE estimate exceeding the Qj estimate.

Height-Resolved Data

The period between 7:00 and 9:00 UT was indicated in Figure 7a as a region of moderately

enhanced height-integrated Joule heating. The middle panel in Figure 7b illustrates that for this

period the neutral wind contribution occurs in the upper E region above about 124 km. The Joule

heating rate profile of qj is, as a result, broader than the qjE estimate in the upper E region and,

thus, the wind impact is to distribute more heat over a larger altitude range.

The period from 11:00 to 16:00 UT in the middle panel of Figure 7b shows a combination

of positive and negative difference values throughout the E region. The positive values (yellow-

red regions) depicting neutral wind enhancements in the local Joule heating rate occur largely in

the upper E region while the negative values (green-dark blue regions) depicting neutral wind

reductions in the local Joule heating rate occur mostly in the lower to middle E region. Over the

period from 11:00 to 14:30 UT, the electric field remains consistently southward (see Figure 6),

resulting in an eastward E×B drift in the F region. Near 12:30 and 14:00 UT in Figure 7b, a

significant reduction in the local Joule heating rate is found. This is similar to the event observed

near 18:00 UT on August 5, 1993. The only way a reduction in the local Joule heating rate can

occur is if there is a significant component of the neutral wind in the ExB direction--that is, for

this case an eastward wind. This supports the general idea that a directionally steady electric field

results in a neutral wind contribution that acts to reduce the height-integrated Joule heating rate

and makes for more localized Joule heating in the E region.

In the period following 14:30 UT to about 15:00 UT, Figure 7b indicates a significant

enhancement in the estimate for qj occurring in the upper E region with a weak reduction in qj at

lower altitudes. As discussed previously, the electric field was significantly weaker in magnitude

and its direction was changing from southward to northward over this time. This increase

appears to be due to the neutral wind's residual response to the prior period of active conditions

and large electric fields. The changing electric field direction with respect to the neutral wind

during this time might be responsible for some of the enhancement but, because of the relatively

weak electric field magnitude, the neutral wind magnitude must be the significant factor. This is

analyzed further in the discussion section.

Following this event the neutral wind contribution drops dramatically and later acts to

reduce the Joule heating rate in the upper E region during the electric field enhancement near
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16:00UT. Again,the neutralwind isactingto reducetheJouleheatingon thetopsideof theE
regionmakingamorelocalizedJouleheatingwith apeaknear117km.
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4. DISCUSSION

The electromagnetic properties of the E region are often characterized individually by

estimating the current density, electric field, and conductivity, as was done in the previous

section and presented in Figures 1, 2, and 3. Also shown in the previous section is that an equally

important assessment of E-region electrodynamics is to determine how these combined

properties relate to the dissipation of electromagnetic energy within the ionosphere. Moreover,

the present analysis provides observational evidence of the electrical coupling with altitude that

can be used to test whether models properly address the extent of E-region coupling among the

conductivity, electric field, neutral winds, and currents. Analyzed further in this section are the

observations presented in the previous section.

For both experiments it was found that the neutral wind contribution to the local Joule

heating rate is altitude dependent. This behavior has led to a number of occasions where the

winds effectively reduced the Joule heating rate, typically, just above the Pedersen conductivity

peak. This resulted in the height-resolved Joule heating rate to be more concentrated over a

narrow altitude regime. The impact of a more localized heat source on the ionosphere-

thermosphere system is not well established. The radar-derived ion temperatures (not shown)

illustrate a localized altitude region of enhanced temperatures during these times, as is expected

if the heating is associated with localized ion frictional heating between the ions and neutrals.

The transfer of this more localized heat source to the neutrals and the impact on the neutral

composition, ion-neutral chemistry, and neutral dynamics is more complex and requires further

assessment. It is expected with this type of narrow energy source gravity waves will be

generated. A treatment of gravity wave generation, propagation, and dissipation based on a

relatively broad vertical distribution of Joule heating was described by Richmond [ 1978]. The

gravity wave spectrum generated depends on the spatial and temporal characteristics of the

source with the vertical wavelengths of the waves dependent on the vertical extent of the source.

Owing to our observations of a more localized Joule heating rate, one would expect a different

spectrum of gravity waves and different propagation characteristics than that caused by a broader

heat source. Further analysis of gravity wave processes associated with localized regions of

enhanced Joule heating is required.

As is apparent from the data presented, the neutral wind behavior is critical in determining

the altitude distribution of the Joule heating rate and how it may influence the ionosphere-

thermosphere system. Figure 5 showed for the August 5, 1993 data near 18:00 UT that the wind

rotates in a counterclockwise direction as the altitude decreases, producing a reduction in the

Joule heating rate in the upper E region and an enhancement in the Joule heating rate in the lower

E region. Counterclockwise rotation of the neutral wind has been commonly observed in

numerous TMA trail rocket experiments that measure the neutral wind [e.g., Mikkelsen et al.,

198 la; Mikkelsen et al., 1987; Larsen et al., 1995]. This altitude behavior has been attributed to

vertically propagating semidiurnal tides that are dominant in the high-latitude, lower E region.
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However,theobservedenhancementin the lowerandupperE-regionwind field cannotbe
explainedsolelyby tidal behaviorandseemsto beassociatedwith the increasein themagnitude
of thenortheastwardelectricfield.

In describingthegeneralbehaviorof theE andF regiondynamics,Mikkelsenet al.
[198la,b] andMikkelsenandLarsen[1983]showedthroughobservationsandtheoretical
argumentsthatthewind systemwasin approximategeostrophic/gradientwind balanceresulting
fromCoriolis, pressuregradient,andLorentzforces.Furtheranalysisof thisbehaviorhasbeen
discussedmostrecentlyby LarsenandWalterscheid[1995]with emphasison theeffectsof the
Hall conductivityin modifying theCoriolis parameterand,thus,producinga modified
geostrophicbalancein the lowerE region.Thisprovidedapossibletheoreticalexplanationfor
enhancedneutralwind velocitiesobservedin thelowerE regionTMA trails during theARIA
rocketexperiment[Larsenet al., 1995]andotherrocketexperiments[Larsenet al., 1989;
Mikkelsenet al., 198la, 1987].In describingthemomentumbalancetheLorentzforcing term
wasexpressedin theform of Hall andPedersendragcoefficients,sonamedbecauseof their
directdependenceon theHall andPedersenconductivity,respectively.In theF regionandupper
E regionthePedersendragcoefficientwouldbethedominanttermfor Lorentzforcing while in
the lowerE regionboth thePedersenandHall dragcoefficientsmustbeconsidered.Larsenand
Walterscheid[1995]presentanumberof simplifiedsolutionsthatdescribethesteady-state
neutralwind responsein theE andF regionresultingfrom themodifiedgeostrophicbalance
betweentheCoriolis andLorentzforces.Thesesimplifiedsolutionswill be relatedto theneutral
wind observationsfor theAugust5, 1993dataset.

Case I - Neutral Wind Behavior for August 5, 1993

The neutral wind behavior during the enhanced Joule heating rate period near 18:00 UT on

August 5, 1993, has been shown in Figure 5. Figure 8 displays altitude profiles of the zonal and

meridional neutral wind components derived from the radar measurements covering the time

period from 16:57 to 18:28 UT. The profiles have been color-coded into three specific periods

with the blue profiles representing the winds associated with the beginning of the event (16:57 to

17:32 UT), the green profiles representing the winds associated with the main event (17:37 to

17:53 UT), and the red profiles representing the winds associated with the end of the event

(17:58 to 18:28 UT). Recall that throughout this period the electric field is intensifying but

remains in the northeastward direction.

For the zonal wind, little change was found at and below 117 km throughout the entire

event. Above this altitude, the zonal component was found to gradually transition from weakly

eastward at the beginning of the event to strongly westward at the peak of the event with the

magnitude of this component increasing significantly from 117 km to 140 km. After the peak,

the eastward component gradually reduces to weakly westward values (indicated by the red

profiles) in the upper E region. This behavior in the eastward component is indicative of

enhanced Pedersen drag, directed toward the northwest due to the ExB plasma drift, forcing the
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upperE regionzonalwinds in awestwarddirectionastheelectricfield intensifies.This behavior
is in agreementwith theresultsof LarsenandWalterscheid[1995].

Themeridionalcomponentof theneutralwindcoveringtheperiodfrom 16:57to 18:28UT
showsmorevariability in the lowerE region;transitioningfrom weaklynorthwardatthe
beginningof theeventto stronglysouthwardat thepeakof theevent,maximizingat 117km.
Following thepeak,thelower E-regionmeridionalwindsgraduallyreduceto weaklysouthward
winds.In theupperE regionthemeridionalwind shiftsin oppositeaccordto the lower E-region
windswith thiscomponentbecomingstronglynorthwardatthepeakof theeventandreturning
to aweaklynorthwardcomponentat theendof theevent.TheupperE regionwinds areagain
consistentwith forcingby thenorthwestPedersendragterm.Thelower E regionforcing is more
complexwith thetransitioningbetweenthePedersendragforceandtheHall dragforce asthe
Hall conductivitybeginsto dominateoverthePedersenconductivityat andbelowabout 117km.
FromtheLarsenandWalterscheid[1995]study,adominantHall dragunderwestwardplasma
drift wouldproducea northwardneutralwind in the lowerE region.Onecanobservethe
oppositeeffect in thelowerE-regionwindswith asouthwardenhancementin themeridional
windsduringanenhancednorthwestwardplasmadrift. Theassumptionof steadystateby Larsen
andWalterscheid,theexclusionof upwardpropagatingtidesthatbecomeimportantin thispart
of theE region,andtheeffectsof the localJouleheatingrateontheneutraldynamicsmaybe
responsiblefor thedeviationbetweenthetheoryandourlowerE-regionobservations.

Overall,theneutralwindbehaviorpresentedinFigure8explainsthedifferencesbetween

theqj andqjEestimateswith eachof theseprofiles throughouttheexperimentmatchingthe
specificrootsneededto satisfy(8) in thesamemanneraswasperformedfor thesingleprofile
shownin Figure5. Figure9 showstheneutralwind vectorsfrom 17:00to 19:00UT thatresult
from combiningthecomponentsshowninFigure8.Thecombinedvectorsshowthatasthe
electricfield increasedat thebeginningof theeventtheupperE regionneutralwindsbeganto
increasein magnitudeandrotatecounterclockwiseinto theExB direction,effectively reducing
theJouleheatingratein theupperE regionatthepeakof theevent.After thepeak,theupperE
regionwindsreducedin magnitudebut remainedin theExB direction.In the lower E region
below 120km, arotationin time from eastwardwasfoundat thebeginningof theeventto
southward-directedneutralwindsmaximizingat thepeakof theevent.Thesouthwardwind
effectivelyenhancesthelocal Jouleheatingratein the lowerE region.Thus,onefinds from this
event,andtheotherdataset,thatthecounterclockwiserotationin theneutralwind with
decreasingheightimpactstheJouleheatingratein analtitude-dependentmanner.This eventalso
illustratesthattheelectricfield, with apeakmagnitudeof 60mV/m,significantly influencesthe
responseof theneutralwind well into the lowerE region.

Case II - Neutral Wind Behavior for May 2, 1995

The electric field and Joule heating rates for the May 2, 1995 experiment have been shown

in Figures 6 and 7. The difference plot in Figure 7b revealed a number of regions of significant
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andcomplexdifferences,which reflectthevariableconditionsfor this day.Thiscomplex
behaviorin thelocalandheight-integratedJouleheatingratesimpliesacomplexbehaviorin the
neutralwind field.As thedifferencesbetweenqj and qjE have been attributed to neutral wind

effects, it is important to recognize that the neutral winds have a much better memory of past

forcing and a poor response to current events than the electric field and the resultant ion drift.

The spatial scale of the forcing also impacts the ion drift and neutral wind response differently.

This is particularly important in this present study as measurements made nearly overhead by the

radar may reflect quite well the local changes in the electric field, ion drift, and neutral wind but

interpretation of the neutral wind behavior would require better spatial and temporal coverage to

trace its forcing history. For the August 5, 1993 data set it was implicitly assumed that the

observed local behavior in the measured electric field and neutral wind represented a large-scale

feature that could explain the observed local behavior in the wind. This appeared to be

appropriate for the relatively quiet conditions associated with that day. For the May 2, 1995 data

set, the complex conditions make it difficult to make such an assumption. Therefore, the

behavior of the neutral wind, like in case I, has not been interpreted, but the impact of the neutral

wind in describing the differences between qj and qjE observed on this day has simply been

indicated.

It has been shown in case I that the neutral winds derived from the ion momentum equation

using (15) are equal to the specific roots needed to describe the differences between qj and qjE.

The roots for May 2, 1995 data have been evaluated and it was found that the neutral wind

estimate using the ion momentum equation also is representative of the specific roots needed to

describe the differences between the qj and qjE for this day. Using these wind estimates and

applying them to (7), the two terms that determine the sign of Aq(z) can be evaluated. The first

term, lun(Z)121BI, represents the contribution of the neutral wind magnitude to the Joule heating

rate. The second term, -21EIlun(z)lcos(0), represents the contribution of the neutral wind

component in the ExB direction to the local Joule heating rate. The interplay between these two

terms determines the manner by which the neutral wind is enhancing or reducing the local Joule

heating rate. Figure 10 is a plot of these two terms covering the time period between 06:58 and

16:27 UT. As most of the differences in Figure 7b are from the upper E region, both terms in

Figure 10 have been plotted for the altitudes of 117.3 km, 123.0 km, 128.6 km, 134.3 km, and

139.9 km. The color code identifies these altitudes with the appropriate line. Term 1 will always

serve to enhance the Joule heating rate and, therefore, will be a positive term contributing to

Aq(z). A negative term 2 is an indication that a component of the neutral wind is in the ExB

direction while a positive value indicates the neutral wind component is opposite to the ExB

direction. Therefore, in order to have a negative Aq(z), there must be a component of the neutral

wind in the ExB direction and of sufficient magnitude to make term 2 negative and greater than

term 1. It should be noted, and is shown in (6), that the neutral wind contribution to the Joule

heating rate is weighted by the local Pedersen conductivity. Thus, strong neutral winds can be

present throughout the E region but its contribution to the Joule heating rate will also be

dependent on the altitude distribution of the Pedersen conductivity. In combination with Figure
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7b, theevaluatedtermspresentedinFigure 10will beusedto help interpretandevaluatethe
differencesbetweentheqj andqjEestimatesfor this day.

It is clearfrom Figure 10thattheJouleheatingratefor theperiodbetween7:00and
10:00UT is dominatedby term 1in theupperE regionresultingin anoverallenhancementof
theJouleheatingrate(seeFigure7).Term2 in Figure 10transitionsfrom positiveto negative
valuesover this timeperiod indicatinga neutralwind rotationwith time thatis,at first, opposite
to theExB direction(enhancingJouleheating)andthenrotatesinto theExB direction(reducing
Jouleheating).A half-hourprior to thisperiodtheelectricfield directionrotatedbriefly from
southwardto eastwardandtheelectricfield magnitudeincreasedby overa factorof 3.

After about10:00UT, theneutralwindbehaviorisquite variablewith themagnitudeof the
neutralwind vacillating in accordancewith vacillationsin theneutralwind direction,asshown
by both termsin Figure 10a,b.At times,term2 becomespositive indicatinganeutralwind
directionoppositeto theExB drift and,thus,contributingto theenhancementof theJoule
heatingrate.However,for themostpartterm2 wassignificantly negativeandoftenexceededthe
positivecontributionfrom term 1,particularlyat timesnear12:30,13:15,14:00,and16:00UT.
Theperiodbetween12:30and14:00UT is similar to theeventobservednear18:00UT on
August5, 1993with anextendedperiodof adirectionallysteadyelectricfield, which in thiscase
wassouthward.The only wayareductionin the localJouleheatingratecanoccuris if thereis a
significantcomponentof theneutralwind in theE×B direction--that is, for thiscaseaneastward
wind. The 16:00UT periodis abit differentasthereductionin theJouleheatingratecameafter
theelectricfield becamenortheastward,thus,requiringanorthwestwardneutralwind.

In theperiodfollowing 14:30UT to about15:00UT, Figure7 showedasignificant
enhancementin theestimatefor qj occurringin theupperE regionwith aweakreductionin qj at
lower altitudes.As discussedpreviously,theelectricfield wassignificantly weakerin magnitude
andits directionwaschangingfrom southwardto northwardoverthis time.Theelectricfield
rotationis apparentin term2 of Figure10basthevalueschangefrom positiveto strongly
negative.Thewind magnitude,indicatedby term 1in Figure 10a,increasessignificantlyatthis
timeandbecomesthedominanttermproducinganoverall enhancementin theJouleheatingrate.
Theincreasein thewind magnitudeisnotclear,however,thismaybea goodindicationthatthe
collision frequencymodelusedis notappropriateundertheseactiveconditions.However,even
afterreducingthecollisionfrequencyprofile by afactorof 2, theneutralwind wasstill a
dominantfactorandthefeature,althoughreduced,still remained.Thefollowing subsection
discussesfurtherthe impactof thecollisionfrequencymodelon theJouleheatingratesand
neutralwind estimates.

Collision Frequency Sensitivity

In describing the height-resolved and height-integrated Joule heating rates and the

associated neutral wind behavior a semi-empirical model was used to provide the ion-neutral

collision frequency values that are needed in all of these calculations. The model was described
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previouslyin section2 andisuniquelyspecifiedfor eachexperimentby usingtheappropriateAp
andF10.7indicesasinput into theMSIS-90modelfor theparticularday.Theestimateof the
Jouleheatingrate,qj, using(13) isdirectly proportionalto the inverseof thecollision frequency.
Theapproximatedestimateof theJouleheatingrate,qjE,using(2) is dependenton thecollision
frequencythroughtheestimateof thePedersenconductivity.As discussedbyBrekkeandRino
[1978],theheightof maximumJouleheatingrate,qjE,estimatedby (2) ismuchmoresensitive
to themodelcollision frequency(and,therefore,themodelneutralatmosphere)thanthat
estimatedby (13).Theneutralwind estimateusing(15) is alsodependenton theinverseof the
collisionfrequencybut its impactis scaledby therelationshipbetweentheelectricfield andlocal
ion drift givenby thebracketedtermin (15),asdiscussedby Rino et al. [1977]andJohnson
[1990].As eachof theestimatesareinfluencedin adifferentwayby thecollisionfrequency,it is
importantto recognizethesensitivityof theseestimatesfor different collisionfrequencyvalues.
To performthis sensitivitytestthecollisionfrequencywasmodifiedby multiplying theneutral
densityprovidedby MSIS-90by factorsof 75%and125%.TheJouleheatingeventonAugust5,
1993near18:00UT presentedin Figure4 is usedto illustratethe impactof thecollision
frequencyon theactualdata.

Thecollision frequencymodelusedfor thisdayis presentedin Figure 1la alongwith
collisionfrequencyprofilesscaledby75%and 125%of theMSIS-90density.Alsoplottedin
Figure11aretheqj profiles(11b),the qjE profiles (11c), profiles of the collision frequency-

dependent component of the Pedersen conductivity (11 d), and profiles of the neutral wind

components (1 le) from the August 5, 1993 data set at 17:43 UT based on the different values of

collision frequency given in Figure 1 la. The sensitivity of the height-resolved Joule heating rate,

qj, shown in Figure 1 lb illustrates the inverse dependence of this estimate on the collision

frequency. The collision frequency does not impact the peak height of the estimate nor the

overall shape of the Joule heating profile but simply modifies the area under the curve. The

change in area under the curve by the collision frequency will have an impact when this local

estimate is height-integrated over E-region altitudes.

Figure 1 lc is a plot of the height-resolved Joule heating rate (qjE) and shows little change in

the peak value but an overall shift of the entire profile to higher and lower altitudes. The lack of

change in the area under the curve indicates that the collision frequency has little impact on the

height-integrated estimate using (2). The Pedersen conductivity is the parameter in (2) that is

dependent on the collision frequency and can be written as

ene(z) _i(z)vi"(z) (16)
crp(z) = B f2_(z)+ v 2 (z)

in

The second term determines the behavior of the Pedersen conductivity with collision frequency.

This term is plotted in Figure 1ld and shows clearly that a value of 125% of the collision

frequency raises the entire layer up in altitude by about 3 km, while 75% of the value lowers the
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layer by an equivalent distance. This is not as clearly seen in the qjE profiles in Figure 1 lc

because of the changing electron density with height.

Figure 1 le shows the sensitivity of the neutral wind zonal and meridional components to

changes in the collision frequency. The unaltered behavior of the zonal component suggests an

insensitivity to changes in collision frequency and reflects a small contribution from the

bracketed term given in (15) for this time period. The meridional component is sensitive to

collision frequency and responds most significantly in the lower E region. Here, the meridional

wind increases when the collision frequency value is multiplied by 75%. This would create an

unreasonable wind speed in the lower E region that is not easily justified physically. Multiplying

the collision frequency by 125% reduces the meridional wind in the lower E region and increases

the upper E region meridional winds. Irrespective of the changes in collision frequency

(assuming the collision frequency shape does not change significantly), the neutral wind profile

with altitude is not changed dramatically. This would indicate that, although some uncertainty

exists, the neutral wind profile derived from the radar measurements is representative throughout

the E region for this period. This behavior can also be seen in the difference plots between qj and

qjE presented in Figure 4b and 7b. Referring to Figure 4b, the multiplying factor of 125%

intensifies the negative differences (blue) and reduces the positive differences (red), and vice

versa for the factor of 75%. As these differences reflect the neutral wind behavior, the

uncertainty in the collision frequency in determining the Joule heating rate may be bounded by

placing physical constraints on the neutral wind.

The height-integrated quantities are obviously also affected by the collision frequency.

When multiplying the collision frequency profile by 75% and 125%, little change is found in the

height-integrated quantity, QjE, as was indicated by the local estimates presented in Figure 1 lc.

The height-integrated quantity Q j, however, is sensitive to the collision frequency value as the

area under the curve in Figure 1 lb changes with collision frequency. It is apparent that by

changing the collision frequency the two height-integrated quantities could be forced to be equal.

However, unless the two quantities have equal shapes throughout the E region, the neutral winds

must be modified accordingly to compensate for the local differences and to make the height-

integrated quantities the same. This results in nonphysical wind fields, thus, again limiting the

range of possible collision frequency profiles.

Therefore, a tradeoff exists concerning the two approaches when considering the impact of

collision frequency. The estimates of qj provide profiles of the Joule heating rate with accurate

estimates of the peak height and profile shape with the entire profile scaled by the uncertainty in

the collision frequency. The profile estimates of qjE are dependent on the collision frequency in

terms of its ability to determine the peak height of maximum Joule heating. The height-

integrated quantity of QjE shows an indifference to the collision frequency while the Qj scales

inversely by the collision frequency. Because the change in collision frequency impacts the two

Joule heating rate estimates differently, the neutral wind profile must also be modified by

changes in collision frequency. Assuming the shape of the collision frequency does not change
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significantly,thecollisionfrequencymodifiesthe levelof influencetheE-regionneutralwinds
haveon theheight-resolvedandheight-integratedJouleheatingratesbut doesnot eliminatetheir
importance.Thesameresultsapply to theMay2, 1995datasetbut dueto thecomplexity in the
conditionsfor thatday,thecollision frequencybehaviorisdifficult to assess.
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5. CONCLUSION

The improved capability of the Sondrestrom incoherent-scatter radar to sample the E region

at high resolution provides new insight into high-latitude E-region electrodynamic behavior in

terms of currents, conductivities, electric fields, and neutral winds. These electrodynamic

parameters have been presented and used to evaluate the radar estimation of the height-resolved

and height-integrated E-region Joule heating rates and the influence of the neutral wind on these

estimates. Two separate approaches to estimating the Joule heating rate have been presented. The

first, and more typical approach, has been to determine the Pedersen conductivity and electric

field from the radar measurements and estimate the Joule heating rate, qjE, neglecting the neutral

wind. The second, and less frequently used approach, has been to determine the local current

density (which includes the neutral winds implicitly) and Cowling conductivity from the radar

measurements and estimate the Joule heating rate, qj, accounting for the neutral wind. Two 24-

hour MLTCS World Day radar experiments (August 5, 1993 and May 2, 1995) that correspond

to solar minimum, daytime periods of moderate geomagnetic activity were used to evaluate the

Joule heating rates. The following describes the conclusions obtained from this study.

1. The ability to measure the height-resolved Joule heating rate, qj, that includes the neutral

wind revealed significantly more structure in both experiments than observed in the qjE profiles

(whose altitude dependence is described by the Pedersen conductivity). This structure is

attributed to the E-region neutral wind and its altitude-dependent influence on the Joule heating

rate; often, enhancing the local Joule heating rate at one altitude while reducing the Joule heating

rate at another. This led to a number of occasions where a much narrower and more localized

enhancement occurred in the height-resolved Joule heating rate. Radar data from the August 5,

1993 experiment near 18:00 UT provided a good illustration of this effect with neutral winds

reducing the local Joule heating rate by over 75% in the upper E region while neutral winds

enhanced the local Joule heating rate by nearly 50% in the lower E region. The E-region height-

integrated Joule heating rate for this particular time period experienced an overall decrease of

40% due to the neutral wind. Thus, the cancellation of opposing contributions to the Joule

heating rate by the wind with height results in a lesser overall neutral wind contribution to the

height-integrated quantity. In addition, the localization of the E-region Joule heating rate (about

12 km for the case discussed above) caused by the presence of the neutral wind is a new

observation whose impact on the ionosphere-thermosphere system requires further investigation.

2. From the two radar experiments, one finds that the upper E-region neutral winds modify

the Joule heating rate in a manner that is associated with the behavior of the electric field.

Typically, it was found that when the electric field direction remained steady and only the

magnitude of the electric field was enhanced the neutral winds acted to reduce the upper E-

region Joule heating rate. During times when the electric field direction changed significantly, it

was found that the neutral winds acted to enhance the upper E-region Joule heating rate.
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Subsequent counterclockwise rotation of the neutral wind with decreasing altitude typically led

to enhancements in the Joule heating rate in the lower E-region.

3. The most significant neutral wind contribution to the Joule heating rate came after a

substorm period on May 2, 1995 where an enhancement in the height-integrated Joule heating

rate by over 400% occurred. Here the majority of the neutral wind contribution came from the

upper E region. This enhancement occurred during a 180 ° change in electric field direction and

an overall reduction in electric field magnitude. Other enhancements of the height-integrated

Joule heating rate by 200% were observed to occur during periods of significant changes in the

electric field direction. Reduction of the height-integrated Joule heating rate by the neutral winds

by as much as 40% were observed during periods of elevated magnitude in the electric field but

with the direction of the electric field steady for extended periods.

4. Overall, the estimate of the height-integrated Joule heating rate, QjE, assuming the

neutral wind is zero served as a limited proxy for the two data sets presented and showed an

invariance to moderate changes in the ion-neutral collision frequency model. The height-

integrated Joule heating rate, Qj, is more susceptible to changes in the ion-neutral collision

frequency model, as the height-resolved profile is inversely proportional to the collision

frequency. Yet, the height of maximum Joule heating is best estimated by the qj profile, which is

not influenced by the change in collision frequency. Finally, reasonable changes to the ion-

neutral collision frequency model can modify the absolute values presented in this work, but

cannot eliminate the neutral wind effects presented nor the trends observed.
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FIGURES

Figure 1. Resolved electric field derived from three-position radar measurements for August 5,

1993 presented in the form of direction and magnitude versus Universal Time. Zero degrees

represents an eastward electric field and positive angles correspond to a counterclockwise

rotation from east. Errors in the electric field never exceed 2 mV/m.

Figure 2. Height-resolved, E-region ion drifts and the logto electron densities at 6 km vertical

resolution from three-position radar measurements for August 5, 1993.

Figure 3. Height-resolved, E-region current density and log 10Pedersen conductivity at 6 km

vertical resolution for August 5, 1993 derived from the data presented in Figures 1 and 2.

Figure 4. (a) Compares the height-integrated Joule heating rate (QjE) excluding neutral winds,

depicted by the solid black line, with the height-integrated Joule heating rate (Qj) including

neutral winds, depicted by the solid orange line. The height profiles used to determine the height-

integrated Joule heating rates are provided in (b). The height-resolved Joule heating rates (qjE),

using (2), are presented in the bottom panel and the height-resolved Joule heating rates (qj),

using (13), are presented in the top panel. The middle panel represents the difference between the

top and bottom panels with green-blue colors indicating reductions in the Joule heating rate and

yellow-red indicating enhancements in the Joule heating rate. The difference plot relates to (6)

given in section 2 and, therefore, provides an indication of the neutral wind influence on the

Joule heating rate. Relative errors in Qj in excess of 50% are excluded.

Figure 5. Height-resolved solutions to the quadratic formula given by (8) representing the

possible neutral wind magnitudes and directions that can satisfy the observed differences

between the two approaches to estimating the Joule heating rate are presented by the color-coded

lines for August 5, 1993 at 17:43 UT. The wind direction is with respect to the ExB drift

direction, indicated by zero degrees, with counterclockwise rotation of the wind associated with

increasing angle. The altitude of each solution is color coded and the neutral wind values at each

altitude derived using (15) are shown by the color-coded stars. Profiles of the zonal and

meridional components of the wind are presented in the insert.

Figure 6. Resolved electric field derived from three position radar measurements for May 2,

1995 presented in the same manner as Figure 1. Errors in the electric field never exceed 2 mV/m.

Figure 7. (a) Height-integrated and (b) height-resolved Joule heating rates for May 2, 1995

presented in the same manner as Figure 4. Relative errors in Qj in excess of 50% are excluded

and the profiles are zeroed out.

Figure 8. Derived neutral wind zonal and meridional components covering the time period from

16:57 to 18:28 UT on August 5, 1993. The profiles are color-coded to represent select periods of

the Joule heating event near 18:00 UT with blue lines representing prior to the peak, the green

lines are during the peak, and the red lines are after the peak. The mean error for the two
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componentsisalsopresentedwith variationsin theerrorof + 50 m/sec above 125 km and

+ 20 m/sec below.

Figure 9. Resolved E-region neutral wind vectors for August 5, 1993 covering the same period

as Figure 8.

Figure 10. The height-resolved contribution of the neutral wind to the Joule heating rate for

May 2, 1995 is presented using the two terms in (7) with (a) term 1 = lun(z)121BI and (b) term 2 =

-21EIlun(z)lcos(0). See section 2 text for details.

Figure 11. (a) Collision frequency model multiplied by constant factors of 75% and 125%. The

sensitivity of (b) qj, (c) E, (d) Pedersen factor, and (e) neutral wind to the collision frequency

model for August 5, 1993 at 17:43 UT.
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